Fundamentals of Dielectric Spectroscopy in Polymer Nanocomposites

  • Chapter
  • First Online:
Dynamics of Composite Materials

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

  • 810 Accesses

Abstract

Properties of Polymer Nanocomposites (PNCs) are strongly modulated by the properties of the interfacial polymer layer surrounding the nanofillers. This interfacial region in PNCs experiences significant structural and dynamic changes in comparison to the bulk polymer. In this chapter, we first discuss experimental data to demonstrate how the presence of the interfacial layer can be detected in the dielectric spectra of different PNCs. We emphasize the impact of nanoparticles on segmental and chain dynamics in PNCs. Then, we present various theoretical approaches to describe the dielectric spectra of the PNCs, explain the behavior of the dielectric parameters, and describe how to extract the characteristics of the interfacial layer. We emphasize that the dielectric signal in heterogeneous systems is not additive, and the interfacial layer model provides the most accurate description of the dielectric data in PNCs. We also emphasize the often overlooked experimental observation—a strong decrease in the dielectric strength of segmental relaxation in the interfacial layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 169.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 169.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APL:

Adsorbed Polymer Layer

BDS:

Broadband Dielectric Spectroscopy

DSC:

Differential Scanning Calorimetry

GNPs:

Grafted Nanoparticles

GSNC:

Glycerol/Silica Nanocomposite

HN:

Havriliak−Negami

IL:

Interfacial Layer

ILM:

Interfacial Layer Model

MD:

Molecular Dynamic

MWS:

Maxwell–Wagner–Sillars

NMR:

Nuclear Magnetic Resonance

PNCs:

Polymer Nanocomposites

PI:

Polyisoprene

PPG:

Poly(propylene glycol)

PVAc:

Poly(vinyl acetate)

P2VP:

Poly(2vinyl pyridine)

SAXS :

Small Angle X-ray Scattering

SANS:

Small Angle Neutron Scattering

TMDSC:

Temperature-Modulated Differential Scanning Calorimetry

TPM:

Two Phase Model

References

  1. Jancar J, Douglas J, Starr FW, Kumar S, Cassagnau P, Lesser A, Sternstein SS, Buehler M (2010) Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51:3321–3343. https://doi.org/10.1016/j.polymer.2010.04.074

    Article  CAS  Google Scholar 

  2. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110. https://doi.org/10.1126/science.1130557

    Article  CAS  Google Scholar 

  3. Kumar SK, Benicewicz BC, Vaia RA, Winey KI (2017) 50th anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules 50:714–731. https://doi.org/10.1021/acs.macromol.6b02330

    Article  CAS  Google Scholar 

  4. Baker RW, Low BT (2014) Gas separation membrane materials: a perspective. Macromolecules 47:6999–7013. https://doi.org/10.1021/ma501488s

    Article  CAS  Google Scholar 

  5. Croce F, Appetecchi G, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456. https://doi.org/10.1038/28818

    Article  CAS  Google Scholar 

  6. Crosby AJ, Lee JY (2007) Polymer nanocomposites: the “nano” effect on mechanical properties. Polym Rev 47:217–229. https://doi.org/10.1080/15583720701271278

    Article  CAS  Google Scholar 

  7. Freeman BD (1999) Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 32:375–380. https://doi.org/10.1021/ma9814548

    Article  CAS  Google Scholar 

  8. Leszczyńska A, Njuguna J, Pielichowski K, Banerjee J (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453:75–96. https://doi.org/10.1016/j.tca.2006.11.002

    Article  CAS  Google Scholar 

  9. Mutiso RM, Winey KI (2015) Electrical properties of polymer nanocomposites containing rod-like nanofillers. Prog Polym Sci 40:63–84. https://doi.org/10.1016/j.progpolymsci.2014.06.002

    Article  CAS  Google Scholar 

  10. Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS, Xu J, Nandivada H, Pumplin BG, Lahann J, Ramamoorthy A (2007) Ultrastrong and stiff layered polymer nanocomposites. Science 318:80–83. https://doi.org/10.1126/science.1143176

    Article  CAS  Google Scholar 

  11. Ramanathan T, Abdala A, Stankovich S, Dikin D, Herrera-Alonso M, Piner R, Adamson D, Schniepp H, Chen X, Ruoff R (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327. https://doi.org/10.1038/nnano.2008.96

    Article  CAS  Google Scholar 

  12. Song J, Wang Y, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183–197. https://doi.org/10.1016/S0378-7753(98)00193-1

    Article  CAS  Google Scholar 

  13. Thakur VK, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116:4260–4317. https://doi.org/10.1021/acs.chemrev.5b00495

    Article  CAS  Google Scholar 

  14. Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R Rep 53:73–197. https://doi.org/10.1016/j.mser.2006.06.001

    Article  CAS  Google Scholar 

  15. Merino S, Martin C, Kostarelos K, Prato M, Vazquez E (2015) Nanocomposite hydrogels: 3D polymer–nanoparticle synergies for on-demand drug delivery. ACS Nano 9:4686–4697. https://doi.org/10.1021/acsnano.5b01433

    Article  CAS  Google Scholar 

  16. Merkel T, Freeman B, Spontak R, He Z, Pinnau I, Meakin P, Hill A (2002) Ultrapermeable, reverse-selective nanocomposite membranes. Science 296:519–522. https://doi.org/10.1126/science.1069580

    Article  CAS  Google Scholar 

  17. Schadler LS, Kumar SK, Benicewicz BC, Lewis SL, Harton SE (2007) Designed interfaces in polymer nanocomposites: a fundamental viewpoint. MRS Bull 32:335–340. https://doi.org/10.1557/mrs2007.232

    Article  CAS  Google Scholar 

  18. Song Q, Nataraj S, Roussenova MV, Tan JC, Hughes DJ, Li W, Bourgoin P, Alam MA, Cheetham AK, Al-Muhtaseb SA (2012) Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ Sci 5:8359–8369. https://doi.org/10.1039/C2EE21996D

    Article  CAS  Google Scholar 

  19. Xu H, Cheng L, Wang C, Ma X, Li Y, Liu Z (2011) Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 32:9364–9373. https://doi.org/10.1016/j.biomaterials.2011.08.053

    Article  CAS  Google Scholar 

  20. Carroll B, Cheng SW, Sokolov AP (2017) Analyzing the interfacial layer properties in polymer nanocomposites by broadband dielectric spectroscopy. Macromolecules 50:6149–6163. https://doi.org/10.1021/acs.macromol.7b00825

    Article  CAS  Google Scholar 

  21. Senses E, Akcora P (2013) An interface-driven stiffening mechanism in polymer nanocomposites. Macromolecules 46:1868–1874. https://doi.org/10.1021/ma302275f

    Article  CAS  Google Scholar 

  22. Fragiadakis D, Pissis P, Bokobza L (2006) Modified chain dynamics in poly (dimethylsiloxane)/silica nanocomposites. J Non-Cryst Solids 352:4969–4972. https://doi.org/10.1016/j.jnoncrysol.2006.02.159

    Article  CAS  Google Scholar 

  23. Holt AP, Bocharova V, Cheng S, Kisliuk AM, White BT, Saito T, Uhrig D, Mahalik JP, Kumar R, Imel AE, Etampawala T, Martin H, Sikes N, Sumpter BG, Dadmun MD, Sokolov AP (2016) Controlling interfacial dynamics: covalent bonding versus physical adsorption in polymer nanocomposites. ACS Nano 10:6843–6852. https://doi.org/10.1021/acsnano.6b02501

    Article  CAS  Google Scholar 

  24. Holt AP, Griffin PJ, Bocharova V, Agapov AL, Imel AE, Dadmun MD, Sangoro JR, Sokolov AP (2014) Dynamics at the polymer/nanoparticle interface in poly (2-vinylpyridine)/silica nanocomposites. Macromolecules 47:1837–1843. https://doi.org/10.1021/ma5000317

    Article  CAS  Google Scholar 

  25. Cheng S, Bocharova V, Belianinov A, **ong S, Kisliuk A, Somnath S, Holt AP, Ovchinnikova OS, Jesse S, Martin H, Etampawala T, Dadmun M, Sokolov AP (2016) Unraveling the mechanism of nanoscale mechanical reinforcement in glassy polymer nanocomposites. Nano Lett 16:3630–3637. https://doi.org/10.1021/acs.nanolett.6b00766

    Article  CAS  Google Scholar 

  26. Genix A-C, Bocharova V, Kisliuk A, Carroll B, Zhao S, Oberdisse J, Sokolov AP (2018) Enhancing the mechanical properties of glassy nanocomposites by tuning polymer molecular weight. ACS Appl Mater Interfaces 10:33601–33610. https://doi.org/10.1021/acsami.8b13109

    Article  CAS  Google Scholar 

  27. Baeza GP, Dessi C, Costanzo S, Zhao D, Gong S, Alegria A, Colby RH, Rubinstein M, Vlassopoulos D, Kumar SK (2016) Network dynamics in nanofilled polymers. Nat Commun 7:11368. https://doi.org/10.1038/ncomms11368

    Article  CAS  Google Scholar 

  28. Griffin PJ, Bocharova V, Middleton LR, Composto RJ, Clarke N, Schweizer KS, Winey KI (2016) Influence of the bound polymer layer on nanoparticle diffusion in polymer melts. ACS Macro Lett 5:1141–1145. https://doi.org/10.1021/acsmacrolett.6b00649

    Article  CAS  Google Scholar 

  29. Harton SE, Kumar SK, Yang H, Koga T, Hicks K, Lee H, Mijovic J, Liu M, Vallery RS, Gidley DW (2010) Immobilized polymer layers on spherical nanoparticles. Macromolecules 43:3415–3421. https://doi.org/10.1021/ma902484d

    Article  CAS  Google Scholar 

  30. Jiang N, Endoh MK, Koga T, Masui T, Kishimoto H, Nagao M, Satija SK, Taniguchi T (2015) Nanostructures and dynamics of macromolecules bound to attractive filler surfaces. ACS Macro Lett 4:838–842. https://doi.org/10.1021/acsmacrolett.5b00368

    Article  CAS  Google Scholar 

  31. Jiang N, Wang J, Di X, Cheung J, Zeng W, Endoh MK, Koga T, Satija SK (2016) Nanoscale adsorbed structures as a robust approach for tailoring polymer film stability. Soft Matter 12:1801–1809. https://doi.org/10.1039/C5SM02435H

    Article  CAS  Google Scholar 

  32. Jimenez AM, Zhao D, Misquitta K, Jestin J, Kumar SK (2019) Exchange lifetimes of the bound polymer layer on silica nanoparticles. ACS Macro Lett 8:166–171. https://doi.org/10.1021/acsmacrolett.8b00877

    Article  CAS  Google Scholar 

  33. Jouault N, Crawford MK, Chi C, Smalley RJ, Wood B, Jestin J, Melnichenko YB, He L, Guise WE, Kumar SK (2016) Polymer chain behavior in polymer nanocomposites with attractive interactions. ACS Macro Lett 5:523–527. https://doi.org/10.1021/acsmacrolett.6b00164

    Article  CAS  Google Scholar 

  34. Jouault N, Moll JF, Meng D, Windsor K, Ramcharan S, Kearney C, Kumar SK (2013) Bound polymer layer in nanocomposites. ACS Macro Lett 2:371–374. https://doi.org/10.1021/mz300646a

    Article  CAS  Google Scholar 

  35. Koga T, Barkley D, Nagao M, Taniguchi T, Carrillo J-MY, Sumpter BG, Masui T, Kishimoto H, Koga M, Rudick JG, Endoh MK (2018) Interphase structures and dynamics near nanofiller surfaces in polymer solutions. Macromolecules 51:9462–9470. https://doi.org/10.1021/acs.macromol.8b01615

    Article  CAS  Google Scholar 

  36. Popov I, Carroll B, Bocharova V, Genix A-C, Cheng S, Khamzin A, Kisliuk A, Sokolov AP (2020) Strong reduction in amplitude of the interfacial segmental dynamics in polymer nanocomposites. Macromolecules 53:4126–4135. https://doi.org/10.1021/acs.macromol.0c00496

    Article  CAS  Google Scholar 

  37. Gong S, Chen Q, Moll JF, Kumar SK, Colby RH (2014) Segmental dynamics of polymer melts with spherical nanoparticles. ACS Macro Lett 3:773–777. https://doi.org/10.1021/mz500252f

    Article  CAS  Google Scholar 

  38. Genix A-C, Bocharova V, Carroll B, Lehmann M, Saito T, Krueger S, He L, Dieudonné-George P, Sokolov AP, Oberdisse J (2019) Understanding the static interfacial polymer layer by exploring the dispersion states of nanocomposites. ACS Appl Mater Interfaces 11:17863–17872. https://doi.org/10.1021/acsami.9b04553

    Article  CAS  Google Scholar 

  39. Cheng S, Holt AP, Wang H, Fan F, Bocharova V, Martin H, Etampawala T, White BT, Saito T, Kang N-G, Dadmun MD, Mays JW, Sokolov AP (2016) Unexpected molecular weight effect in polymer nanocomposites. Phys Rev Lett 116:038302. https://doi.org/10.1103/PhysRevLett.116.038302

    Article  CAS  Google Scholar 

  40. Kim SY, Meyer HW, Saalwächter K, Zukoski CF (2012) Polymer dynamics in peg-silica nanocomposites: effects of polymer molecular weight, temperature and solvent dilution. Macromolecules 45:4225–4237. https://doi.org/10.1021/ma300439k

    Article  CAS  Google Scholar 

  41. Papon A, Montes H, Lequeux F, Oberdisse J, Saalwächter K, Guy L (2012) Solid particles in an elastomer matrix: impact of colloid dispersion and polymer mobility modification on the mechanical properties. Soft Matter 8:4090–4096. https://doi.org/10.1039/C2SM06885K

    Article  CAS  Google Scholar 

  42. Cheng S, Carroll B, Lu W, Fan F, Carrillo J-MY, Martin H, Holt AP, Kang N-G, Bocharova V, Mays JW (2017) Interfacial properties of polymer nanocomposites: role of chain rigidity and dynamic heterogeneity length scale. Macromolecules 50:2397–2406. https://doi.org/10.1021/acs.macromol.6b02816

    Article  CAS  Google Scholar 

  43. Carrillo J-MY, Cheng S, Kumar R, Goswami M, Sokolov AP, Sumpter BG (2015) Untangling the effects of chain rigidity on the structure and dynamics of strongly adsorbed polymer melts. Macromolecules 48:4207–4219. https://doi.org/10.1021/acs.macromol.5b00624

    Article  CAS  Google Scholar 

  44. Hanakata PZ, Douglas JF, Starr FW (2014) Interfacial mobility scale determines the scale of collective motion and relaxation rate in polymer films. Nat Commun 5:4163. https://doi.org/10.1038/ncomms5163

    Article  CAS  Google Scholar 

  45. Schweizer KS, Simmons DS (2019) Progress towards a phenomenological picture and theoretical understanding of glassy dynamics and vitrification near interfaces and under nanoconfinement. J Chem Phys 151:240901. https://doi.org/10.1063/1.5129405

    Article  CAS  Google Scholar 

  46. Fukao K, Miyamoto Y (2000) Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene. Phys Rev E 61:1743–1754. https://doi.org/10.1103/PhysRevE.61.1743

    Article  CAS  Google Scholar 

  47. Fukao K, Miyamoto Y (2001) Slow dynamics near glass transitions in thin polymer films. Phys Rev E 64:011803. https://doi.org/10.1103/PhysRevE.64.011803

    Article  CAS  Google Scholar 

  48. Fukao K, Uno S, Miyamoto Y, Hoshino A, Miyaji H (2001) Dynamics of alpha and beta processes in thin polymer films: poly(vinyl acetate) and poly(methyl methacrylate). Phys Rev E 64:051807. https://doi.org/10.1103/PhysRevE.64.051807

    Article  CAS  Google Scholar 

  49. Labahn D, Mix R, Schönhals A (2009) Dielectric relaxation of ultrathin films of supported polysulfone. Phys Rev E 79:011801. https://doi.org/10.1103/PhysRevE.79.011801

    Article  CAS  Google Scholar 

  50. Madkour S, Szymoniak P, Heidari M, von Klitzing R, Schönhals A (2017) Unveiling the dynamics of self-assembled layers of thin films of poly(vinyl methyl ether) (PVME) by nanosized relaxation spectroscopy. ACS Appl Mater Interfaces 9:7535–7546. https://doi.org/10.1021/acsami.6b14404

    Article  CAS  Google Scholar 

  51. Madkour S, Yin H, Füllbrandt M, Schönhals A (2015) Calorimetric evidence for a mobile surface layer in ultrathin polymeric films: poly(2-vinyl pyridine). Soft Matter 11:7942–7952. https://doi.org/10.1039/C5SM01558H

    Article  CAS  Google Scholar 

  52. Martínez-Tong DE, Vanroy B, Wübbenhorst M, Nogales A, Napolitano S (2014) Crystallization of poly(l-lactide) confined in ultrathin films: competition between finite size effects and irreversible chain adsorption. Macromolecules 47:2354–2360. https://doi.org/10.1021/ma500230d

    Article  CAS  Google Scholar 

  53. Napolitano S, Capponi S, Vanroy B (2013) Glassy dynamics of soft matter under 1D confinement: How irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films. Eur PhysJ E 36:61. https://doi.org/10.1140/epje/i2013-13061-8

    Article  CAS  Google Scholar 

  54. Napolitano S, Prevosto D, Lucchesi M, **ue P, D’Acunto M, Rolla P (2007) Influence of a reduced mobility layer on the structural relaxation dynamics of aluminum capped ultrathin films of poly(ethylene terephthalate). Langmuir 23:2103–2109. https://doi.org/10.1021/la062229j

    Article  CAS  Google Scholar 

  55. Napolitano S, Wübbenhorst M (2011) The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat Commun 2:260. https://doi.org/10.1038/ncomms1259

    Article  CAS  Google Scholar 

  56. Rotella C, Napolitano S, De Cremer L, Koeckelberghs G, Wübbenhorst M (2010) Distribution of segmental mobility in ultrathin polymer films. Macromolecules 43:8686–8691. https://doi.org/10.1021/ma101695y

    Article  CAS  Google Scholar 

  57. Rotella C, Napolitano S, Vandendriessche S, Valev VK, Verbiest T, Larkowska M, Kucharski S, Wübbenhorst M (2011) Adsorption kinetics of ultrathin polymer films in the melt probed by dielectric spectroscopy and second-harmonic generation. Langmuir 27:13533–13538. https://doi.org/10.1021/la2027779

    Article  CAS  Google Scholar 

  58. Rotella C, Wübbenhorst M, Napolitano S (2011) Probing interfacial mobility profiles via the impact of nanoscopic confinement on the strength of the dynamic glass transition. Soft Matter 7:5260–5266. https://doi.org/10.1039/C1SM05430A

    Article  CAS  Google Scholar 

  59. Serghei A, Mikhailova Y, Eichhorn KJ, Voit B, Kremer F (2006) Discrepancies in the characterization of the glass transition in thin films of hyperbranched polyesters. J Polym Sci Part B Polym Phys 44:3006–3010. https://doi.org/10.1002/polb.20929

    Article  CAS  Google Scholar 

  60. Serghei A, Mikhailova Y, Huth H, Schick C, Eichhorn KJ, Voit B, Kremer F (2005) Molecular dynamics of hyperbranched polyesters in the confinement of thin films. Eur Phys J E 17:199–202. https://doi.org/10.1140/epje/i2005-10009-7

    Article  CAS  Google Scholar 

  61. Serghei A, Tress M, Kremer F (2006) Confinement effects on the relaxation time distribution of the dynamic glass transition in ultrathin polymer films. Macromolecules 39:9385–9387. https://doi.org/10.1021/ma061290s

    Article  CAS  Google Scholar 

  62. Serghei A, Tress M, Kremer F (2009) The glass transition of thin polymer films in relation to the interfacial dynamics. J Chem Phys 131:154904. https://doi.org/10.1063/1.3248368

    Article  CAS  Google Scholar 

  63. Yin H, Napolitano S, Schönhals A (2012) Molecular mobility and glass transition of thin films of poly(bisphenol A carbonate). Macromolecules 45:1652–1662. https://doi.org/10.1021/ma202127p

    Article  CAS  Google Scholar 

  64. Kremer F, Schönhals A (2002) Broadband dielectric spectroscopy. Springer, Berlin

    Google Scholar 

  65. Boucher VM, Cangialosi D, Alegrìa A, Colmenero J, González-Irun J, Liz-Marzan LM (2011) Physical aging in PMMA/silica nanocomposites: enthalpy and dielectric relaxation. J Non-Cryst Solids 357:605–609. https://doi.org/10.1016/j.jnoncrysol.2010.05.091

    Article  CAS  Google Scholar 

  66. Füllbrandt M, Purohit PJ, Schönhals A (2013) Combined FTIR and dielectric investigation of poly(vinyl acetate) adsorbed on silica particles. Macromolecules 46:4626–4632. https://doi.org/10.1021/ma400461p

    Article  CAS  Google Scholar 

  67. Holt AP (2016) The effect of attractive polymer-nanoparticle interactions on the local segmental dynamics of polymer nanocomposites. PhD Dissertation, University of Tennessee

    Google Scholar 

  68. Cheng S, Carroll B, Bocharova V, Carrillo J-M, Sumpter BG, Sokolov AP (2017) Focus: structure and dynamics of the interfacial layer in polymer nanocomposites with attractive interactions. J Chem Phys 146:203201. https://doi.org/10.1063/1.4978504

    Article  CAS  Google Scholar 

  69. Wübbenhorst M, van Turnhout J (2000) Conduction-free dielectric loss ∂ε/∂ lnf–a powerful tool for the analysis of strong. Dielectrics Newsletter, NOVOCONTROL, GmbH, Hundsangen, pp 1–8

    Google Scholar 

  70. Boyd RH (1985) Relaxation processes in crystalline polymers: molecular interpretation—a review. Polymer 26:1123–1133. https://doi.org/10.1016/0032-3861(85)90240-X

    Article  CAS  Google Scholar 

  71. Baeza GP, Oberdisse J, Alegria A, Saalwächter K, Couty M, Genix A-C (2015) Depercolation of aggregates upon polymer grafting in simplified industrial nanocomposites studied with dielectric spectroscopy. Polymer 73:131–138. https://doi.org/10.1016/j.polymer.2015.07.045

    Article  CAS  Google Scholar 

  72. Roths T, Marth M, Weese J, Honerkamp J (2001) A generalized regularization method for nonlinear ill-posed problems enhanced for nonlinear regularization terms. Comput Phys Commun 139:279–296. https://doi.org/10.1016/S0010-4655(01)00217-X. (☆☆ This program can be downloaded from the CPC Program Library under catalogue identifier: http://cpc.cs.qub.ac.uk/summaries/ADOQ)

  73. Casalini R, Roland CM (2016) Local and global dynamics in polypropylene glycol/silica composites. Macromolecules 49:3919–3924. https://doi.org/10.1021/acs.macromol.6b00354

    Article  CAS  Google Scholar 

  74. Cheng S, Mirigian S, Carrillo J-MY, Bocharova V, Sumpter BG, Schweizer KS, Sokolov AP (2015) Revealing spatially heterogeneous relaxation in a model nanocomposite. J Chem Phys 143:194704. https://doi.org/10.1063/1.4935595

    Article  CAS  Google Scholar 

  75. Cheng S (2021) Broadband dielectric spectroscopy of polymer nanocomposites. In: Broadband dielectric spectroscopy: a modern analytical technique. American Chemical Society

    Google Scholar 

  76. Cheng S, Sokolov AP (2020) Correlation between the temperature evolution of the interfacial region and the growing dynamic cooperativity length scale. J Chem Phys 152:094904. https://doi.org/10.1063/1.5143360

    Article  CAS  Google Scholar 

  77. Cheng S, **e S-J, Carrillo J-MY, Carroll B, Martin H, Cao P-F, Dadmun MD, Sumpter BG, Novikov VN, Schweizer KS, Sokolov AP (2017) Big effect of small nanoparticles: a shift in paradigm for polymer nanocomposites. ACS Nano 11:752–759. https://doi.org/10.1021/acsnano.6b07172

    Article  CAS  Google Scholar 

  78. Holt AP, Bocharova V, Cheng S, Kisliuk AM, Ehlers G, Mamontov E, Novikov VN, Sokolov AP (2017) Interplay between local dynamics and mechanical reinforcement in glassy polymer nanocomposites. Phys Rev Mater 1:062601. https://doi.org/10.1103/PhysRevMaterials.1.062601

    Article  Google Scholar 

  79. Sargsyan A, Tonoyan A, Davtyan S, Schick C (2007) The amount of immobilized polymer in PMMA SiO2 nanocomposites determined from calorimetric data. Eur Polymer J 43:3113–3127. https://doi.org/10.1016/j.eurpolymj.2007.05.011

    Article  CAS  Google Scholar 

  80. Klonos P, Kulyk K, Borysenko MV, Gun’ko VM, Kyritsis A, Pissis P (2016) Effects of molecular weight below the entanglement threshold on interfacial nanoparticles/polymer dynamics. Macromolecules 49:9457–9473. https://doi.org/10.1021/acs.macromol.6b01931

  81. Klonos P, Pissis P (2017) Effects of interfacial interactions and of crystallization on rigid amorphous fraction and molecular dynamics in polylactide/silica nanocomposites: a methodological approach. Polymer 112:228–243. https://doi.org/10.1016/j.polymer.2017.02.003

    Article  CAS  Google Scholar 

  82. Wurm A, Ismail M, Kretzschmar B, Pospiech D, Schick C (2010) Retarded crystallization in polyamide/layered silicates nanocomposites caused by an immobilized interphase. Macromolecules 43:1480–1487. https://doi.org/10.1021/ma902175r

    Article  CAS  Google Scholar 

  83. Chehrazi E, Taheri Qazvini N (2013) Nanoconfined segmental dynamics in miscible polymer blend nanocomposites: the influence of the geometry of nanoparticles. Iran Polym J 22:613–622. https://doi.org/10.1007/s13726-013-0160-4

    Article  CAS  Google Scholar 

  84. Pandis C, Logakis E, Kyritsis A, Pissis P, Vodnik VV, Džunuzović E, Nedeljković JM, Djoković V, Rodríguez Hernández JC, Gómez Ribelles JL (2011) Glass transition and polymer dynamics in silver/poly(methyl methacrylate) nanocomposites. Eur Polymer J 47:1514–1525. https://doi.org/10.1016/j.eurpolymj.2011.06.001

    Article  CAS  Google Scholar 

  85. Batistakis C, Lyulin AV, Michels MAJ (2012) Slowing down versus acceleration in the dynamics of confined polymer films. Macromolecules 45:7282–7292. https://doi.org/10.1021/ma300753e

    Article  CAS  Google Scholar 

  86. Klonos P, Panagopoulou A, Kyritsis A, Bokobza L, Pissis P (2011) Dielectric studies of segmental dynamics in poly(dimethylsiloxane)/titania nanocomposites. J Non-Cryst Solids 357:610–614. https://doi.org/10.1016/j.jnoncrysol.2010.06.058

    Article  CAS  Google Scholar 

  87. Steeman PAM, Maurer FHJ (1990) An interlayer model for the complex dielectric constant of composites. Colloid Polym Sci 268:315–325. https://doi.org/10.1007/bf01411674

    Article  CAS  Google Scholar 

  88. Napolitano S, Wübbenhorst M (2007) Dielectric signature of a dead layer in ultrathin films of a nonpolar polymer. J Phys Chem B 111:9197–9199. https://doi.org/10.1021/jp072868i

    Article  CAS  Google Scholar 

  89. Fröhlich H (1986) Theory of dielectrics: dielectrics constant and dielectric loss, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  90. Klonos PA, Goncharuk OV, Pakhlov EM, Sternik D, Deryło-Marczewska A, Kyritsis A, Gun’ko VM, Pissis P (2019) Morphology, molecular dynamics, and interfacial phenomena in systems based on silica modified by grafting polydimethylsiloxane chains and physically adsorbed polydimethylsiloxane. Macromolecules 52:2863–2877. https://doi.org/10.1021/acs.macromol.9b00155

  91. Fragiadakis D, Pissis P, Bokobza L (2005) Glass transition and molecular dynamics in poly (dimethylsiloxane)/silica nanocomposites. Polymer 46:6001–6008. https://doi.org/10.1016/j.polymer.2005.05.080

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Popov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 UT-Battelle, LLC, under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Popov, I., Sokolov, A.P. (2022). Fundamentals of Dielectric Spectroscopy in Polymer Nanocomposites. In: Schönhals, A., Szymoniak, P. (eds) Dynamics of Composite Materials. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-030-89723-9_2

Download citation

Publish with us

Policies and ethics

Navigation