Acid-Base Physiology and Pathophysiology

  • Chapter
Contemporary Nephrology

Abstract

In the past 2 years a considerable amount of new data has been introduced in acidbase physiology, to a large degree because of the emergence of technology for fluorometric measurement of intracellular pH. While fluorescence techniques have blossomed, the last 2 years witnessed very few studies performed with classic micropuncture, clearance, or balance techniques. Another major trend is the shift of interest to aspects of cell biology, including mechanisms of cell pH regulation and the roles of intracellular and extracellular messengers. Finally, the loudest discussions occurred regarding the role of urea metabolism in overall acid-base balance, despite the fact that few new data were produced in regard to the question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alpern, R.J., 1985, Mechanism of basolateral membrane H+/OH-/HCO3- transport in the rat proximal convoluted tubule, J. Gen. Physiol. 86:613.

    PubMed  CAS  Google Scholar 

  2. Sasaki, S. and Berry, C.A., 1984, Mechanism of bicarbonate exit across basolateral membrane of the rabbit proximal convoluted tubule, Am. J. Physiol. 246:F889.

    PubMed  CAS  Google Scholar 

  3. Biagi, B.A. and Sohtell, M., 1986, pH sensitivity of the basolateral membrane of the rabbit proximal tubule, Am. J. Physiol. 250:F261.

    PubMed  CAS  Google Scholar 

  4. Biagi, B.A., Kubota, T., Sohtell, M., and Giebisch, G., 1981, Intracellular potentials in rabbit proximal tubules perfused in vitro, Am. J. Physiol. 240:F200.

    PubMed  CAS  Google Scholar 

  5. Biagi, B.A. and Sohtell, ML, 1986, Electrophysiology of basolateral bicarbonate transport in the rabbit proximal tubule, Am. J. Physiol. 250:F267.

    PubMed  CAS  Google Scholar 

  6. Sasaki, S., Shiigai, T., Yoshiyama, N., and Takeuchi, J., 1987, Mechanism of bicarbonate exit across basolateral membrane of rabbit proximal straight tubule, Am. J. Physiol. 252:F11.

    PubMed  CAS  Google Scholar 

  7. Akiba, T., Alpern, R.J., Eveloff, J.E., Calamina, J., and Warnock, D.G., 1986, Electrogenic sodium/bicarbonate cotransport in rabbit renal cortical basolateral membrane vesicles, J. Clin. Invest. 78:1472.

    PubMed  CAS  Google Scholar 

  8. Jentsch, T.J., Matthes, H., Keller, S.K., and Wiederholt, M., 1986, Electrical properties of sodium bicarbonate symport in kidney epithelial cells (BSC-1), Am. J. Physiol. 251:F954.

    PubMed  CAS  Google Scholar 

  9. Lopes, A.G., Siebens, A.W., Giebisch, G., and Boron, W.F., 1987, Electrogenic Na/HC03 cotransport across basolateral membrane of isolated perfused Necturus proximal tubule, Am. J. Physiol. 253:F340.

    PubMed  CAS  Google Scholar 

  10. Krapf, R., Alpern, R.J., Rector, F.C., Jr., and Berry, C.A., 1987, Basolateral membrane Na/base cotransport is dependent on CO2/HCO3 in the proximal convoluted tubule, J. Gen. Physiol. 90:833.

    PubMed  CAS  Google Scholar 

  11. Burckhardt, B.C. and Fromter, E., 1987, Evidence for OH-/H+ permeation across the peritubular cell membrane of rat renal proximal tubule in HCO3 ~ -free solutions, Pflüger’s Arch. Eur. J. Physiol. 409:132.

    CAS  Google Scholar 

  12. Soleimani, M., Grassl, S.M., and Aronson, P.S., 1987, Stoichiometry of Na+-HCO3 - cotransport in basolateral membrane vesicles isolated from rabbit renal cortex, J. Clin. Invest. 79: 1276.

    PubMed  CAS  Google Scholar 

  13. Yoshitomi, K., Burckhardt, B-C., and Fromter, E., 1985, Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule, Pflüger’s Arch. Eur. J. Physiol. 405:360.

    CAS  Google Scholar 

  14. Alpern, R.J., 1987, Apical membrane chloride/base exchange in the rat proximal convoluted tubule, J. Clin. Invest. 79:1026.

    PubMed  CAS  Google Scholar 

  15. Rocco, V.K., Cragoe, E.J., Jr., and Warnock, D.G., 1987, N-ethoxycarbonyl-2-ethoxy-l,2- dihydroquinolone, amiloride analogues, and renal Na + /H+ antiporter, Am. J. Physiol. 252:F517.

    PubMed  CAS  Google Scholar 

  16. Goldfarb, D. and Nord, E.P., 1987, Asymmetric affinity of Na + - H + antiporter for Na4* at the cytoplasmic versus external transport site, Am. J. Physiol. 253:F959.

    PubMed  CAS  Google Scholar 

  17. Bidet, M., Tauc, M., Merot, J., Vandewalle, A., and Poujeol, P., 1987, Na + -H+ exchange in proximal cells isolated from rabbit kidney. I. Functional characteristics, Am. J. Physiol. 253:F935.

    PubMed  CAS  Google Scholar 

  18. Nord, E.P., Goldfarb, D., Mikhail, N., Moradeshagi, P., Hafezi, A., Vaystub, S., Cragoe, E.J., and Fine, L.G., 1986, Characteristics of the Na + -H+ antiporter in the intact renal proximal tubular cell, Am. J. Physiol. 250:F539.

    PubMed  CAS  Google Scholar 

  19. Kinne-Saffran, E. and Kinne, R., 1986, Proton pump activity and Mg-ATPase activity in rat kidney cortex brushborder membranes: Effect of “proton ATPase” inhibitors, Pflüger’s Arch. Eur. J. Physiol. 407:S180.

    CAS  Google Scholar 

  20. Gurich, R.W. and Warnock, D.G., 1986, Electrically neutral Na + -H+ exchange in endosomes obtained from rabbit renal cortex, Am. J. Physiol. 251:F702.

    PubMed  CAS  Google Scholar 

  21. Sabolic, I. and Burckhardt, G., 1986, Characteristics of the proton pump in rat renal cortical endocytotic vesicles, Am. J. Physiol. 250:F817.

    PubMed  CAS  Google Scholar 

  22. Montrose, M.H., Friedrich, T., and Murer, H., 1987, Measurements of intracellular pH in single LLC-PK1 cells: Recovery from an acid load via basolateral Na + /H+ exchange, J. Membrane Biol. 97:63.

    CAS  Google Scholar 

  23. Alpern, R.J. and Chambers, M., 1987, Cell pH in the rat proximal convoluted tubule. Regulation by luminal and peritubular pH and sodium concentration, J. Clin. Invest. 78:502.

    Google Scholar 

  24. Akiba, T., Rocco, V.K., and Warnock, D.G., 1987, Parallel adaptation of the rabbit renal cortical sodium/proton antiporter and sodium/bicarbonate cotransporter in metabolic acidosis and alkalosis, J. Clin. Invest. 80:308.

    PubMed  CAS  Google Scholar 

  25. Kurtz, I., 1987, Apical Na + /H+ antiporter and glycolysis-dependent H +-ATPase regulate intracellular pH in the rabbit S3 proximal tubule, J. Clin. Invest. 80:928.

    PubMed  CAS  Google Scholar 

  26. Steels, P.S. and Boulpaep, E.L., 1987, pH-dependent electrical properties and buffer permeability of the Necturus renal proximal tubule cell, J. Membrane Biol. 100:165.

    CAS  Google Scholar 

  27. Wang, W., Dietl, P., Silbernagle, S., and Oberleithner, H., 1987, Cell membrane potential: A signal to control intracellular pH and tranepithelial hydrogen on secretion in frog kidney, Pflüger’s Arch. Eur. J. Physiol. 409:289.

    CAS  Google Scholar 

  28. Adam, W.R., Koretsky, A.P., and Weiner, M.W., 1986, 31P-NMR in vivo measurement of renal intracellular pH: Effects of acidosis and K+ depletion in rats, Am. J. Physiol. 251:F904.

    PubMed  CAS  Google Scholar 

  29. Henderson, R.M., Bell, P.B., Cohen, R.D., Browning, C., and lies, R.A., 1986, Measurement of intracellular pH with microelectrodes in rat kidney in vivo, Am. J. Physiol. 250:F203.

    PubMed  CAS  Google Scholar 

  30. Bidet, M., Merot, J., Tauc, M., and Poujeol, P., 1987, Na+-H+ exchanger in proximal cells isolated from kidney. II. Short-term regulation by glucocorticoids, Am. J. Physiol. 253:F945.

    Google Scholar 

  31. Kinsella, J.L., Cujdik, T., and Sacktor, B., 1986, Kinetic studies on the stimulation of Na+-H+ exchange activity in renal brush border membranes isolated from thyroid hormone-treated rats, J. Membrane Biol. 91:183.

    CAS  Google Scholar 

  32. Nord, E.P., Howard, M.J., Hafezi, A., Moradeshagi, P., Vaystub, S., and Insel, P.A., 1987, Alpha2 adrenergic agonists stimulate Na+-H+ antiport activity in the rabbit renal proximal tubule, J. Clin. Invest. 80:1755.

    PubMed  CAS  Google Scholar 

  33. Mellas, J. and Hammerman, M.R., 1986, Phorbol ester-induced alkalinization of canine renal proximal tubular cells, Am. J. Physiol. 250:F451.

    PubMed  CAS  Google Scholar 

  34. Pollock, A.S., Warnock, D.G., and Strewler, G.J., 1986, Parathyroid hormone inhibition of Na + - H + antiporter activity in a cultured renal cell line, Am. J. Physiol. 250:F217.

    PubMed  CAS  Google Scholar 

  35. Weinman, E.J., Shenolikar, S., and Kahn, A.M., 1987, cAMP-associated inhibition of Na + - H+ exchanger in rabbit kidney brush border membranes, Am. J. Physiol. 252:F19.

    PubMed  CAS  Google Scholar 

  36. Harris, R.C., Brenner, B.M., and Seifter, J.L., 1986, Sodium-hydrogen exchange and glucose transport in renal microvillus membrane vesicles from rats with diabetes mellitus, J. Clin. Invest. 77:724.

    PubMed  CAS  Google Scholar 

  37. Liu, F-Y. and Cogan, M.G., 1986, Axial heterogeneity of bicarbonate, chloride, and water transport in the rat proximal convoluted tubule, J. Clin. Invest. 78:1547.

    PubMed  CAS  Google Scholar 

  38. Liu, F.-Y. and Cogan, M.G., 1987, Kinetics of bicarbonate transport in the early proximal convoluted tubule, Am. J. Physiol. 253:F912.

    PubMed  CAS  Google Scholar 

  39. Liu, F-Y. and Cogan, M.G., 1987, Angiotensin II: A potent regulator of acidification in the rat early proximal convoluted tubule, J. Clin. Invest. 80:272.

    PubMed  CAS  Google Scholar 

  40. Liu, F-Y. and Cogan, M.G., 1987, Acidification is inhibited in late proximal convoluted tubule during chronic metabolic alkalosis, Am. J. Physiol. 253:F89.

    PubMed  CAS  Google Scholar 

  41. Pastoriza-Munoz, E., Harrington, R.M., and Graber, M.L., 1987, Axial heterogeneity of intracellular pH in rat proximal convoluted tubule, J. Clin. Invest. 80:207.

    PubMed  CAS  Google Scholar 

  42. Craig, D.M., Galla, J.H., Bonduris, D.N., and Luke, R.G., 1986, Importance of the kidney in the correction of chloride-depletion alkalosis in the rat, Am. J. Physiol. 250:F54.

    PubMed  CAS  Google Scholar 

  43. Galla, J.H., Bonduris, D.N., and Luke, R.G., 1987, Effects of chloride and extracellular fluid volume on bicarbonate reabsorption along the nephron in metabolic alkalosis in the rat. Reassesment of the classical hypothesis of the pathogenesis of metabolic alkalosis, J. Clin. Invest. 80:41.

    PubMed  Google Scholar 

  44. Wall, B.M., Byrum, G.V., Galla, J.H., and Luke, R.G., 1987, Importance of chloride for the correction of chronic metabolic alkalosis in the rat, Am. J. Physiol. 253:F1031.

    PubMed  CAS  Google Scholar 

  45. Borkan, S., Northrup, T.E., Cohen, J.J., and Garella, S., 1987, Renal response to metabolic alkalosis induced by isovolemic hemofiltration in the dog, Kidney Int. 32:322.

    PubMed  CAS  Google Scholar 

  46. Maddox, D.A., and Gennari, F.J., 1986, Load dependence of proximal tubular bicarbonate reabsorption in chronic metabolic alkalosis in the rat, J. Clin. Invest. 77:709.

    PubMed  CAS  Google Scholar 

  47. Kurtz, I., Star, R., Balaban, R.S., Garvin, J.L., and Knepper, M.A., 1986, Spontaneous luminal disequilibrium pH in S3 proximal tubules. Role of ammonia and bicarbonate transport, J. Clin. Invest. 78:989.

    PubMed  CAS  Google Scholar 

  48. Atkins, J.L. and Burg, M.B., 1987, Control of steady-state pH in rabbit proximal straight tubules, Am. J. Physiol. 253:F282.

    PubMed  CAS  Google Scholar 

  49. Preisig, P.A., Ives, H.E., Cragoe, E.J., Alpern, R.J., and Rector, F.C., Jr., 1987, Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption, J. Clin. Invest. 80:970.

    PubMed  CAS  Google Scholar 

  50. Bomsztyk, K., Swenson, E.R., and Calalb, M.B., 1987, HCO3 accumulation in proximal tubule: Roles of carbonic anhydrase, luminal buffers, and pH, Am. J. Physiol. 252:F501.

    PubMed  CAS  Google Scholar 

  51. Bomsztyk, K., 1986, Chloride transport by rat renal proximal tubule: Effects of bicarbonate absorption, Am. J. Physiol. 250:F1046.

    PubMed  CAS  Google Scholar 

  52. Baum, M., 1987, Evidence that parallel Na+-H+ and CI- HCO3 - (OH-) antiporters transport NaCI in the proximal tubule, Am. J. Physiol. 252:F338.

    PubMed  CAS  Google Scholar 

  53. Maddox, D.A., Horn, J.F., Famiano, F.C., and Gennari, F.J., 1986, Load dependence of proximal fluid and bicarbonate reabsorption in the remnant kidney of the Munich-Wistar rat, J. Clin. Invest. 77:1639.

    PubMed  CAS  Google Scholar 

  54. Fine, L.G., Trizna, W., Bourgoignie, J.J., and Bricker, N.S., 1978, Functional profile of the uremic nephron. Role of compensatory hypertrophy in the control of fluid reabsorption by the proximal tubule, J. Clin. Invest. 61:1508.

    PubMed  CAS  Google Scholar 

  55. Cogan, M.G., 1986, Neurogenic regulation of proximal bicarbonate and chloride reabsorption, Am. J. Physiol. 250:F22.

    PubMed  CAS  Google Scholar 

  56. Bank, N., Aynedjian, H.S., and Mutz, B.F., 1986, Microperfusion study of proximal tubule bicarbonate transport in maleic acid-induced renal tubular acidosis, Am. J. Physiol. 250: F476.

    PubMed  CAS  Google Scholar 

  57. Wingo, C.S., 1986, Effect of acidosis on chloride transport in the cortical thick ascending limb of Henle perfused in vitro, J. Clin. Invest. 78:1324.

    PubMed  CAS  Google Scholar 

  58. Kondo, Y., Yoshitomi, K., and Imai, M., 1987, Effect of pH on Cl~ transport in TAL of Henle’s loop, Am. J. Physiol. 253:F1216.

    PubMed  CAS  Google Scholar 

  59. Friedman, P.A. and Andreoli, T.E., 1986, Effects of (CO2 + HCO3~) on electrical conductance in cortical thick ascending limbs, Kidney Int. 30:325.

    PubMed  CAS  Google Scholar 

  60. Munich, G., Dietl, P., and Oberleithner, H., 1986, Chloride transport in the diluting segment of the K + adapted frog kidney effect of amiloride and acidosis, Pflüger’s Arch. Eur. J. Physiol. 407: S60.

    Google Scholar 

  61. Iacovitti, M., Nash, L., Peterson, L.N., Rochon, J., and Levine, D.Z., 1986, Distal tubule bicarbonate accumulation in vivo. Effect of flow and transtubular bicarbonate gradients, J. Clin. Invest. 78:1658.

    PubMed  CAS  Google Scholar 

  62. Capasso, G., Kinne, R., Malnic, G., and Giebisch, G., 1986, Renal bicarbonate reabsorption in the rat. I. Effects of hypokalemia and carbonic anhydrase, J. Clin. Invest. 78:1558.

    PubMed  CAS  Google Scholar 

  63. Capasso, G., Jaeger, P., Giebisch, G., Guckian, V., and Malnic, G., 1987, Renal bicarbonate reabsorption in the rat. II. Distal tubule load dependence and effect of hypokalemia, J. Clin. Invest. 80:409.

    PubMed  CAS  Google Scholar 

  64. Kunau, R.T. and Walker, K.A., 1987, Total CO2 absorption in the distal tubule of the rat, Am. J. Physiol. 252:F468.

    PubMed  Google Scholar 

  65. Arruda, J.A.L., Wheeler, R.P., Dytko, G., and Talor, Z., 1987, Intracellular pH of the turtle bladder assessed with fluorescent probes, Mineral Electolyte Metab. 13:104.

    CAS  Google Scholar 

  66. Graber, M.L., Dixon, T.E., Coachman, D., Herring, K., Ruenes, A., Gardner, T., and Pastoriza- Munoz, E., 1986, Fluorescence identifies an alkaline cell in the turtle urinary bladder, Am. J. Physiol. 250:F159.

    PubMed  CAS  Google Scholar 

  67. Brem, A.S., Pacholski, M., and Lawler, R.G., 1986, Fluctuations in intracellular pH associated with vasopressin stimulation, Am. J. Physiol. 251:F897.

    PubMed  CAS  Google Scholar 

  68. Husted, R.F. and Fischer, J.L., 1987, Selectivity of basolateral anion exchange in the acidification pathway of the turtle bladder, Am. J. Physiol. 252:F1022.

    PubMed  CAS  Google Scholar 

  69. Nero, A.C., Schwartz, J.H., and Furtado, M.R.F., 1987, Characteristics of H+ current transients induced by adverse gradient pulses in toad bladder, Am. J. Physiol. 253:F606.

    PubMed  CAS  Google Scholar 

  70. Stetson, D.L. and Steinmetz P.R., 1986, Correlation between apical intramembranous particles and H + secretion rates during CO2 stimulation in turtle bladder, Pflüger’s Arch. Eur. J. Physiol. 407:S80.

    Google Scholar 

  71. Wheeler, R.P. and Arruda, J.A.L., 1987, Adaptation to metabolic acidosis by turtle urinary bladder, Am. J. Physiol. 252:F256.

    PubMed  CAS  Google Scholar 

  72. Zeidel, M.L., Silva, P., and Seifter, J.L., 1986, Intracellular pH regulation and proton transport by rabbit renal medullary collecting duct cells. Role of plasma membrane proton ATPase, J. Clin. Invest. 77:113.

    PubMed  CAS  Google Scholar 

  73. Zeidel, M.L., Silva, P., and Seifter, J.L., 1986, Intracellular pH regulation in rabbit renal medullary collecting duct cells. Role of chloride-bicarbonate exchange, J. Clin. Invest. 77:1682.

    PubMed  CAS  Google Scholar 

  74. Kleinman, J.G., Blumenthal, S.S., Wiessner, J.H., Reetz, K.L., Lewand, D.L., Mandel, N.S., Mandel, G.S., Garancis, J.C., and Cragoe, E.J., Jr., 1987, Regulation of pH in rat papillary tubule cells in primary culture, J. Clin. Invest. 80:1660.

    PubMed  CAS  Google Scholar 

  75. Wall, S.M., Muallem, S., and Kraut, J.A., 1987, Detection of a Na + -H+ antiporter in cultured rat renal papllary collecting duct cells, Am. J. Physiol. 253:F889.

    PubMed  CAS  Google Scholar 

  76. Diaz-Diaz, F.D., LaBelle, E.F., Eaton, D.C., and DuBose, T.D., 1986, ATP-dependent proton transport in human renal medulla, Am. J. Physiol. 251:F297.

    PubMed  CAS  Google Scholar 

  77. Koeppen, B.M., 1987, Electrophysiological identification of principal and intercalated cells in the rabbit outer medullary collecting duct, Pflüger’s Arch. Eur. J. Physiol. 409:138.

    CAS  Google Scholar 

  78. Koeppen, B.M., 1986, Conductive properties of the rabbit outer medullary collecting duct: Outer stripe, Am. J. Physiol. 250:F70.

    PubMed  CAS  Google Scholar 

  79. McKinney, T.D. and Davidson, K.K., 987, Bicarbonate transport in collecting tubules from outer stripe of outer medulla of rabbit kidneys, Am. J. Physiol. 253:F816.

    Google Scholar 

  80. Laski, M.E., 1987, Total CO2 flux in isolated collecting tubules during carbonic anhydrase inhibition, Am. J. Physiol. 252:F322.

    PubMed  CAS  Google Scholar 

  81. Hays, S., Kokko, J.P., and Jacobson, H.R., 1986, Hormonal regulation of proton secretion in rabbit medullary collecting duct, J. Clin. Invest. 78:1279.

    PubMed  CAS  Google Scholar 

  82. Hays, S.R., Baum, M., and Kokko, J.P., 1987, Effects of protein kinase C activation of sodium, potassium, chloride, and total CO2 transport in the rabbit cortical collecting tubule, J. Clin. Invest. 80:1561.

    PubMed  CAS  Google Scholar 

  83. Schuster, V.L., 1986, Cyclic adenosine monophosphate-stimulated anion transport in rabbit cortical collecting tubule. Kinetics, stoichiometry, and conductive pathways, J. Clin. Invest. 78: 1621.

    PubMed  CAS  Google Scholar 

  84. Tomita, K., Pisano, J.J., Burg, M.B., and Knepper, M.A., 1986, Effects of vasopressin and bradykinin on anion transport by the rat cortical collecting duct, J. Clin. Invest. 77:136.

    PubMed  CAS  Google Scholar 

  85. Bichara, M., Mercier, O., Houllier, P., Paillard, M., and Leviel, F., 1987, Effects of antidiuretic hormone on urinary acidification and on tubular handling of bicarbonate in the rat, J. Clin. Invest. 80:623.

    Google Scholar 

  86. Sasaki, S., Berry, C.A., and Rector, F.C., Jr., 1982, Effect of luminal and peritubular HCO3- concentrations and PCO2 on HCO3- reabsorption in rabbit proximal convoluted tubules perfused in vitro, J. Clin. Invest. 70:639.

    PubMed  CAS  Google Scholar 

  87. Breyer, M.D., Kokko, J.P., and Jacobson, H.R., 1986, Regulation of net bicarbonate transport in rabbit cortical collecting tubule by peritubular pH, carbon dioxide tension, and bicarbonate concentration, J. Clin. Invest. 77:1650.

    PubMed  CAS  Google Scholar 

  88. McKinney, T.D. and Davidson, K.K., 1987, Effect of respiratory acidosis on total CO2 transport by rabbit collecting tubules in vitro, Clin. Res. 35:636A.

    Google Scholar 

  89. Laski, M.E., Abella, M.A., and Kurtzman, N.A., 1987, The cortical collecting tubule is the site of distal nephron adaptation to respiratory acidosis, Clin. Res. 35:551A.

    Google Scholar 

  90. Abdelkhalek, M.B., Barlet, C., and Doucet, A., 1986, Presence of an extramitochondrial anionstimulated ATPase in the rabbit kidney: Localization along the nephron and effect of corticosteroids, J. Membrane Biol. 89:225.

    CAS  Google Scholar 

  91. Khadouri, C., Marsy, S., Barlet-Bas, C., and Doucet, A., 1987, Effect of adrenalectomy on NEM-sensitive ATPase along rat nephron and on urinary acidification, Am. J. Physiol. 253:F495.

    PubMed  CAS  Google Scholar 

  92. Harrington, J.T., Hulter, H.N., Cohen, J.J., and Madias, N.E., 1986, Mineralocorticoidstimulated renal acidification: The critical role of dietary sodium, Kidney Int. 30:43.

    PubMed  CAS  Google Scholar 

  93. Stone, D.K., Seldin, D.W., Kokko, J.P., and Jacobson, H.R., 1983, Mineralocorticoid modulation of rabbit medullary collecting duct acidification: A sodium independent effect, J. Clin. Invest. 72:77.

    PubMed  CAS  Google Scholar 

  94. Mujais, S.K., Nascimento, L., Rademacher, D.R., Wilson, A., and Kurtzman, N.A., 1986, Intact ability to lower urine pH in nonacidotic adrenalectomized rats, Mineral Electrolyte Metab. 12:107.

    CAS  Google Scholar 

  95. Bengele, H.H., Schwartz, J.H., McNamara, E.R., and Alexander, E.A., 1986, Chronic metabolic acidosis augments acidification along the inner medullary collecting duct, Am. J. Physiol. 250:F690.

    PubMed  CAS  Google Scholar 

  96. Bengele, H.H., McNamara, E.R., Schwartz, J.H., and Alexander, E.A., 1987, Inner medullary collecting duct function during rebound alkalemia, Am. J. Physiol. 252:F712.

    PubMed  CAS  Google Scholar 

  97. McKinney, T.D. and Davidson, K.K., 1987, Effect of potassium depletion and protein intake in vivo on renal tubular bicarbonate transport in vitro, Am. J. Physiol. 252:F509.

    PubMed  CAS  Google Scholar 

  98. Ribiero, C. and Suki, W.N., 1986, Acidification in the medullary collecting duct following ureteral obstruction, Kidney Int. 29:1167.

    Google Scholar 

  99. Yang, W.C., Arruda, J.A.L., and Talor, Z., 1987, Na+-H+ antiporter in posthypercanic state, Am. J. Physiol. 253:F833.

    PubMed  CAS  Google Scholar 

  100. Winaver, J., Walker, K.A., and Kunau, R.T., 1986, Effect of acute hypercapnia on renal and proximal tubular total carbon dioxide reabsorption in the acetazolamide-treated rat, J. Clin. Invest. 77:465.

    PubMed  CAS  Google Scholar 

  101. Trivedi, B. and Tannen, R.L., 1986, Effect of respiratory acidosis on intracellular pH of the proximal tubule, Am. J. Physiol. 250:F1030.

    Google Scholar 

  102. Verlander, J.W., Madsen, K.M., and Tisher, C.C., 1987, Effect of acute respiratory acidosis on two populations of intercalated cells in rat cortical collecting duct, Am. J. Physiol. 253:F1142.

    PubMed  CAS  Google Scholar 

  103. Bengele, H.H., Schwartz, J.H., McNamara, E.R., and Alexander, E.A., 1986, Effect of buffer infusion during acute respiratory acidosis, Am. J. Physiol. 250:F115.

    PubMed  CAS  Google Scholar 

  104. Androgue, H.J. and Madias, N.E., 1986, Renal acidification during chronic hypercapnia in the conscious dog, Pflüger’s Arch. Eur. J. Physiol. 406:520.

    Google Scholar 

  105. Batlle, D.C., Downer, M., Gutterman, C., and Kurtzman, N.A., 1985, Relationship of urinary and blood carbon dioxide tension during hypercapnia in the rat, J. Clin. Invest. 75:1517.

    PubMed  CAS  Google Scholar 

  106. May, R.C., Kelly, R.A., and Mitch, W.E., 1986, Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid-dependent mechanism, J. Clin. Invest. 77:614.

    PubMed  CAS  Google Scholar 

  107. May, R.C., Kelly, R.A., and Mitch, W.E., 1987, Mechanisms for defects in muscle protein metabolism in rats with chronic uremia, J. Clin. Invest. 79:1099.

    PubMed  CAS  Google Scholar 

  108. Hara, Y., May, R.C., Kelly, R.A., and Mitch, W.L., 1987, Acidosis, not azotemia, stimulates branched-chain amino acid catabolism in uremic rats, Kidney Int. 32:808.

    PubMed  CAS  Google Scholar 

  109. Carroll, J.E., Landry, A.S., Elliot, M.E., and Goodfriend, T.L., 1986, Effects oi pH on adrenal angiotensin receptors and responses, J. Lab. Clin. Med. 108:23.

    PubMed  CAS  Google Scholar 

  110. Bushinsky, D.A. and Lechleider, R.J., 1987, Mechanism of proton-induced bone calcium release: Calcium carbonate dissolution, Am. J. Physiol. 253:F998.

    PubMed  CAS  Google Scholar 

  111. Kraut, J.A., Mishler, D.R., Singer, F.R., and Goodman, W.G., 1986, The effects of metabolic acidosis on bone formation and bone reabsorption in the rat, Kidney Int. 30:694.

    PubMed  CAS  Google Scholar 

  112. Orchard, C.H., Houser, S.R., Kort, A.A., Bahinski, A., Capogrossi, M.C., and Lakatta, E.G., 1987, Acidosis facilitates spontaneous sarcolasmic reticulum Ca+ + release in rat myocardium, J. Gen. Physiol. 90:145.

    PubMed  CAS  Google Scholar 

  113. Watters, T.A., Wendland, M.F., Parmley, W.W., James, T.L., Botnivik, E.H., Wu S.T., Sievers, R., and Wikman-Coffelt, J., 1987, Factors influencing myocardial response to metabolic acidosis in isolated rat hearts, Am. J. Physiol. 253:H1261.

    PubMed  CAS  Google Scholar 

  114. Awazu, M., Berndt, T.J., and Knox, F.G., 1987, Effect of phosphate infusion on proximal tubule phosphate reabsorption in phosphate-deprived and respiratory alkalotic rats, Mineral Electrolyte Metab. 13:393.

    CAS  Google Scholar 

  115. Levine, B.S., Kraut, J.A., Mishler, D.R., and Crooks, P.W., 1986, Effect of acute acidemia on phosphate uptake by renal proximal tubular brush-border membranes, Am. J. Physiol. 251: F889.

    PubMed  CAS  Google Scholar 

  116. Shapiro, R.J., Yong, C.K.K., and Quamme, G.A., 1987, Influence of chronic dietary acid on renal tubular handling of magnesium, Pflüger’s Arch. Eur. J. Physiol. 409:492.

    CAS  Google Scholar 

  117. Lau, K., Nichols, F.R., and Tannen, R.L., 1987, Renal excretion of divalent ions in response to chronic acidosis: Evidence that systemic pH is not the controlling variable, J. Lab. Clin. Med. 109: 27.

    PubMed  CAS  Google Scholar 

  118. Boross, M., Kinsella, J., Cheng, L., and Sacktor, B., 1986, Glucocorticoids and metabolic acidosis-induced renal transports of inorganic phosphate, calcium, and NH4, Am. J. Physiol. 250: F827.

    PubMed  CAS  Google Scholar 

  119. Scandling, J.D. and Ornt, D.B., 1987, Mechanism of potassium depletion during chronic metabolic acidosis in the rat, Am. J. Physiol. 252:F122.

    PubMed  CAS  Google Scholar 

  120. Frick, A. and Durasin, I., 1986, Regulation of the renal transport of inorganic sulfate: Effects of metabolic changes in arterial blood pH, Pflüger’s Arch. Eur. J. Physiol. 407:541.

    CAS  Google Scholar 

  121. Atkinson, D.E. and Bourke, E., 1987, Metabolic aspects of the regulation of systemic pH, Am. J. Physiol. 252:F947.

    PubMed  CAS  Google Scholar 

  122. Atkinson, D.E. and Bourke, E., 1987, Reply, Am. J. Physiol. 253:F200.

    Google Scholar 

  123. Knepper, M.A., Burg, M.B., Orloff, J., Berliner, R.W., and Rector, F.C., Jr., 1987, Ammonium, urea and systemic pH regulation, Am. J. Physiol. 253:F199.

    PubMed  CAS  Google Scholar 

  124. Walser, M., 1986, Roles of urea production, ammonium excretion, and amino acid oxidation in acid-base balance, Am. J. Physiol. 250:F181.

    CAS  Google Scholar 

  125. Maren, T.H., 1987, Recovery form metabolic acidosis is a function of renal NH4+ loss: Agreement between two models, Am. J. Physiol. 153:F1308.

    Google Scholar 

  126. Walser, M., 1986, Ureagenesis and pH homeostasis: Reply, Am. J. Physiol. 250:F1129.

    CAS  Google Scholar 

  127. Halperin, M.L., Chen, C.B., Cheema-Dhadli, S., West, M.L., and Jungas, R.L., 1986, Is urea formation regulated primarily by acid-base balance in vivo? Am. J. Physiol. 250:F605.

    CAS  Google Scholar 

  128. Cheema-Dhadli, S., Jungas, R.L., and Halperin, M.L., 1987, Regulation of urea synthesis by acid-base balance in vivo.Role of NH3 concentration, Am. J. Physiol. 252:F221.

    PubMed  CAS  Google Scholar 

  129. Halperin, M.L. and Bun-Chen, C., 1987, Plasma glutamine and renal ammoniagenesis in dogs with chronic metabolic acidosis, Am. J. Physiol. 252:F474.

    PubMed  CAS  Google Scholar 

  130. Kuwuhara, M., Sasaki, S., Shiigai, T., and Takeuchi, J., 1986, Glutamine transport in the rabbit proximal straight tubule: Effect of acute acid pH, Kidney Int. 30:340.

    Google Scholar 

  131. Nagami, G.T., Sonu, C.M., and Kurokawa, K., 1987, Ammonia production by isolated mouse proximal tubules perfused in vitro. Effect of metabolic acidosis, J. Clin. Invest. 78:124.

    Google Scholar 

  132. Scaduto, R.C., Jr. and Schoolwerth, A.C., 1985, Effect of bicarbonate on glutamine and glutamate metabolism by rat kidney cortex mitochondria, Am. J. Physiol. 249:F573.

    PubMed  CAS  Google Scholar 

  133. Chobanian, M.C. and Hammerman, M.R., 1987, Insulin stimulates ammoniagenesis in canine renal proximal tubular segments, Am. J. Physiol. 253:F1171.

    PubMed  CAS  Google Scholar 

  134. Chobanian, M.C. and Hammerman, M.R., 1987, Phorbol esters inhibit ammoniagenesis and gluconeogenesis in proximal tubular segments, Am. J. Physiol. 252:F1073.

    PubMed  CAS  Google Scholar 

  135. Nissim, I., Yudkoff, M., and Segal, S., 1986, Nitrogen sources for renal ammoniagenesis: Study with 15N amino acid, Am. J. Physiol. 251:F995.

    PubMed  CAS  Google Scholar 

  136. Sastrasinh, S. and Sastrasinh, M., 1986, Effect of acivicin on glutamine transport by rat renal brush border membrane vesicles, J. Lab. Clin. Med. 108:301.

    PubMed  CAS  Google Scholar 

  137. Nonoguchi, H., Takchara, Y., and Endou, H., 1986, Intra- and inter-nephron heterogeneity of ammoniagenesis in rats: Effects of chronic metabolic acidosis and potassium depletion, Pflüger’s Arch. Eur. J. Physiol. 407:245.

    CAS  Google Scholar 

  138. Tannen, R.L., and Goyal, M., 1986, Urinary inhibitor of the ammoniagenic response to acute acidosis is a prostaglandin, J. Lab. Clin. Med. 108:277.

    PubMed  CAS  Google Scholar 

  139. Good, D.W. and DuBose, T.D., 1987, Ammonia transport by early and late proximal convoluted tubule of the rat, J. Clin. Invest. 79:684.

    PubMed  CAS  Google Scholar 

  140. Simon, E.E. and Hamm, L.L., 1987, Ammonia entry along rat proximal tubule in vivo: Effects of luminal pH and flow rate, Am. J. Physiol. 253:F760.

    PubMed  CAS  Google Scholar 

  141. Nagami, G.T. and Kurokawa, K., 1985, Regulation of ammonia production by mouse proximal tubules perfused in vitro. Effect of luminal perfusion, J. Clin. Invest. 75:844.

    PubMed  CAS  Google Scholar 

  142. Garvin, J.L., Burg, M.B., and Knepper, M.A., 1987, NH3 and NH4 + transport by rabbit proximal straight tubules. Am. J. Physiol. 252:F232.

    PubMed  CAS  Google Scholar 

  143. Kurtz, I. and Balaban, R.S., 1986, Ammonium as a substrate for Na+-K + -ATPase in rabbit proximal tubules, Am. J. Physiol. 250:F497.

    PubMed  CAS  Google Scholar 

  144. Good, D.W., 1987, Effects ofpotassium on ammonia transport by medullary thick ascending limb of the rat, J. Clin. Invest. 80:1358.

    PubMed  CAS  Google Scholar 

  145. Good, D.W., Caflisch, C.R., and DuBose, T.D., 1987, Transepithelial ammonia concentration gradients in inner medulla of the rat, Am. J. Physiol. 252:F491.

    PubMed  CAS  Google Scholar 

  146. Star, R.A., Kurtz, I., Mejia, R., Burg, M.B., and Knepper, M.A., 1987, Disequilibrium pH and ammonia transport in isolated perfused cortical collecting ducts, Am. J. Physiol. 253:F1232.

    PubMed  CAS  Google Scholar 

  147. Star, R.A., Burg, M.B., and Knepper, M.A., 1987, Luminal pH disequilibrium ammonia transport in the outer medullary collecting duct, Am. J. Physiol. 252:F1148.

    PubMed  CAS  Google Scholar 

  148. Romeh, S.A. and Tannen, R.L., 1986, Ameliorization of hypoxia-induced lactic acidosis by superimposed hypercapnea or hydrochloric acid infusion, Am. J. Physiol. 250:F702.

    PubMed  CAS  Google Scholar 

  149. Swenson, E.R. and Maren, T.H., 1986, Dissociation of CO2 hydration and renal acid secretion in the dogfish, Squalus acanthias, Am. J. Physiol. 250:F288.

    PubMed  CAS  Google Scholar 

  150. Madias, N.E. and Zelman, S.J., 1986, The renal response to chronic mineral acid feeding: A reexamination of the role of systemic pH, Kidney Int. 29:667.

    PubMed  CAS  Google Scholar 

  151. Holloway, J.C., Phifer, T., Henderson, R., and Welbourne, T.C., 1986, Renal acid-base metabolism after ischemia, Kidney Int. 29:989.

    PubMed  CAS  Google Scholar 

  152. Winaver, J., Agmon, D., Harari, R., and Better, O.S., 1986, Impaired renal acidification following acute renal ischemia in the dog, Kidney Int. 30:906.

    PubMed  CAS  Google Scholar 

  153. Ichikawa, I. and Kon, V., 1986, Role of peritubular capillary forces in the renal action of carbonic anhydrase inhibitor, Kidney Int. 30:828.

    PubMed  CAS  Google Scholar 

  154. Tucker, B.J., Mundy, C.A., and Blantz, R.C., 1986, Can causality be determined from proximal tubular reabsorption and peritubular physical forces? Am. J. Physiol. 250:F169.

    CAS  Google Scholar 

  155. Shvil, Y., Wald, H., and Popovitzer, M.M., 1987, Effect of bicarbonate and phosphate on renal phosphate lead in experimental Fanconi syndrome, Am. J. Physiol. 252:F310.

    PubMed  CAS  Google Scholar 

  156. Nadler, J.L., Lee, F.O., Hsueh, W., and Horton, R., 1986, Evidence of prostacyclin deficiency in the syndrome of hyporeninemic hypoaldosteronism, N. Engl. J. Med. 314:1015.

    PubMed  CAS  Google Scholar 

  157. Pabico, R.C., McKenna, B.A., and Freeman, R.B., 1987, Renal tubular dysfunctions in patients with idiopathic calcium nephrolithiasis, Mineral Electrolyte Metab. 13:462.

    CAS  Google Scholar 

  158. Pizzarelli, F. and Peacock, M., 1987, Effect of chronic administration of ammonium sulfate on phosphatic stone recurrence, Nephron 46:247.

    PubMed  CAS  Google Scholar 

  159. Richardson, R.M.A. and Halperin, M.L., 1987, The urine pH: A potentially misleading diagnostic test in patients with hyperchloremic metabolic acidosis, Am. J. Kidney Dis. 10:140.

    PubMed  CAS  Google Scholar 

  160. Morris, L.H., Murphy, M.B., and Kitabachi, A.E., 1986, Bicarbonate therapy in severe diabetic ketoacidosis, Ann. Intern. Med. 105:836.

    PubMed  CAS  Google Scholar 

  161. Paulson, W.D., 1987, Anion gap-bicarbonate relation in diabetic ketoacidosis, Am. J. Med. 81: 995.

    Google Scholar 

  162. Gamblin, G.T., Ashburn, R.W., Kemp, D.G., and Beuttel, S.C., 1986, Diabetic ketoacidosis presenting with a normal anion gap, Am. J. Med. 80:758.

    PubMed  CAS  Google Scholar 

  163. Palmisano, J., Gruver, C., and Adams, N.D., 1987, Absence of anion gap in metabolic acidosis in severe methanol poisoning: A case report and review of the literature, Am. J. Kidney Dis. 9: 441.

    PubMed  CAS  Google Scholar 

  164. Madias, N.E., Goorno, W.E., and Herson, S., 1987, Severe lactic acidosis as a presenting feature of pheochromocytoma, Am. J. Kidney Dis. 10:250.

    PubMed  CAS  Google Scholar 

  165. Bourneman, M., Hill, S.C., and Kidd, G.S., 1986, Lactic acidosis in pheochromocytoma, Ann. Intern. Med. 105:880.

    Google Scholar 

  166. Wang, F., Butler, T., Rabbani, G.H., and Jones, P.K., 1986, The acidosis of cholera: Contributions of hyperproteinemia, lactic acidemia, and hyperphosphatemia to an increased serum anion gap, N. Engl. J. Med. 315:1591.

    PubMed  CAS  Google Scholar 

  167. Kruse, J.A., Zaidi, S.A.J., and Carlson, R.W., 1987, Significance of blood lactate levels in critically ill patients with liver disease, Am. J. Med. 83:77.

    PubMed  CAS  Google Scholar 

  168. Weil, M.H., Rackow, E.C., Trevino, R., Grundler, W., Falk, J.L., and Griffel, M.I., 1986, Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation, N. Engl. J. Med. 315:153.

    PubMed  CAS  Google Scholar 

  169. Eckfeldt, J.H., Leatherman, J.W., and Levitt, M.D., 1986, High prevalence of hyperamylasemia in patients with acidemia, Ann. Intern. Med. 104:362.

    PubMed  CAS  Google Scholar 

  170. McAulliffe, J.J., Lind, L.J., Leith, D.E., and Fencl, V., 1986, Hypoproteinemic alkalosis, Ann. Intern. Med. 81:86.

    Google Scholar 

  171. Wallia, R., Greenberg, A., Piraino, B., Mitro, R., and Puschett, J.B., 1986, Serum electrolyte patterns in end-stage renal disease, Am. J. Kidney Dis. 8:98.

    PubMed  CAS  Google Scholar 

  172. Lameire, N. and Matthys, E., 1986, Influence of progressive salt restriction on urinary bicarbonate wasting in uremic acidosis, Am. J. Kidney Dis. 8(S) 151.

    PubMed  CAS  Google Scholar 

  173. Singh, S., Hong, C.D., Dale, A., and Morgan, B., 1986, Comparison of buffering capacity in patients on hemodialysis and continuous ambulatory peritoneal dialysis, Nephron 42:29.

    PubMed  CAS  Google Scholar 

  174. Anderson, L.E., Nixon, J.V., and Henrich, W.L., 1987, Effects of acetate and bicarbonate dialysate on left ventricular performance, Am. J. Kidney Dis. 10:350.

    PubMed  CAS  Google Scholar 

  175. Leunissen, K.M.L., Hoorntje, S.J., Fiers, H.A., Dekkers, W.T., and Mulder, A.W., 1986, Acetate versus bicarbonate hemodialysis in critically ill patients, Nephron 42:146.

    PubMed  CAS  Google Scholar 

  176. Lundin, A.P., Stein, R.A., Brown, C.D., LaBelle, P., Kalman, F.S., Delano, B.G., Henegan, W.F., Lazarus, N.A., Krasnow, N., and Friedman, E.A., 1987, Fatigue, acid-base and electrolyte changes with exhaustive treadmill exercise in hemodialysis patients, Nephron 46:57.

    PubMed  CAS  Google Scholar 

  177. Latos, D.L., Strimel, D., Drews, M.H., and Allison, T.G., 1987, Acid-base and electrolyte changes following maximal and submaximal exercise in hemodialysis patients, Am. J. Kidney Dis. 10:439.

    PubMed  CAS  Google Scholar 

  178. Barsotti, G., Lazzeri, M., Cristofano, C., Cerri, M., Lupetti, S., and Giovannetti, S., 1986, The role of metabolic acidosis in causing uremic hyperphosphatemia, Mineral Electrolyte Metab. 12: 103

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Publishing Corporation

About this chapter

Cite this chapter

Laski, M.E., Kurtzman, N.A. (1989). Acid-Base Physiology and Pathophysiology. In: Klahr, S., Massry, S.G. (eds) Contemporary Nephrology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0829-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0829-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8103-0

  • Online ISBN: 978-1-4613-0829-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation