Acid–Base Physiology

  • Chapter
  • First Online:
Surgical Metabolism

Abstract

Normal human physiology demands and maintains systemic pH in a very narrow range due to intracellular and extracellular mechanisms that correct for physiologic and pathologic perturbations. The most common mechanism for compensation of pH abnormalities is through the respiratory and renal systems, which control carbon dioxide (CO2) and bicarbonate (HCO3 ) homeostasis. Carbon dioxide, a volatile acid, is a by-product of cellular aerobic respiration that combines with water to form carbonic acid (H2CO3) which can be catalyzed by carbonic anhydrase to produce protons (H+) and bicarbonate (HCO3 ).

Nonvolatile organic acids can be produced from biomolecular catabolism, as seen with sulfuric and phosphoric acids (H2SO4 and H3PO4). Lactate, a by-product of anaerobic respiration, and keto acid, a by-product of starvation states, are other endogenous sources of acids. Buffer solutions, weak acids or bases and their conjugate bases and acids, are the first line of defense against significant changes in the pH. These can be found in extracellular and intracellular compartments. The most common extracellular buffers include those of the bicarbonate and carbon dioxide systems described above. Other buffering systems, such as phosphates and proteins, have a relatively minor effect on maintenance of physiologic pH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Corey HE. Stewart and beyond: new models of acid-base balance. Kidney Int. 2003;64(3):777–87.

    Article  CAS  PubMed  Google Scholar 

  2. Bourke E, Haussinger D. pH homeostasis: the conceptual change. Contrib Nephrol. 1992;100:58–88.

    Article  CAS  PubMed  Google Scholar 

  3. Oliver J, Bourke E. Adaptations in urea ammonium excretion in metabolic acidosis in the rat: a reinterpretation. Clin Sci Mol Med Suppl. 1975;48(6):515–0.

    CAS  PubMed  Google Scholar 

  4. Atkinson DE, Bourke E. pH homeostasis in terrestrial vertebrates; ammonium ion as a proton source. In: Heisler N, editor. Mechanisms of systemic regulation: acid–base regulation, ion-transfer and metabolism. New York: Springer; 1995. p. 3–26.

    Chapter  Google Scholar 

  5. van Straten G, van Steenbeek FG, Grinwis GC, Favier RP, Kummeling A, van Gils IH, et al. Aberrant expression and distribution of enzymes of the urea cycle and other ammonia metabolizing pathways in dogs with congenital portosystemic shunts. PLoS One. 2014;9(6):e100077. PubMed PMID: 24945279. Pubmed Central PMCID: 4063766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Gennari FJ, Weise WJ. Acid-base disturbances in gastrointestinal disease. Clin J Am Soc Nephrol. 2008;3(6):1861–8. PubMed PMID: 18922984.

    Article  CAS  PubMed  Google Scholar 

  7. Moore EW. The alkaline tide. Gastroenterology. 1967;52(6):1052–4.

    Article  CAS  PubMed  Google Scholar 

  8. Kellum JA, Bellomo R, Kramer DJ, Pinsky MR. Splanchnic buffering of metabolic acid during early endotoxemia. J Crit Care. 1997;12(1):7–12. PubMed PMID: 9075059.

    Article  CAS  PubMed  Google Scholar 

  9. Bellomo R, Kellum JA, Pinsky MR. Transvisceral lactate fluxes during early endotoxemia. Chest. 1996;110(1):198–204.

    Article  CAS  PubMed  Google Scholar 

  10. Kellum JA, Bellomo R, Kramer DJ, Pinksky MR. Splanchnic buffering of metabolic acid during early endotoxemia. J Crit Care. 1997;12(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  11. Schlichtig R, Grogono AW, Severinghaus JW. Human PaCO2 and standard base excess compensation for acid-base imbalance. Crit Care Med. 1998;26:1173–9.

    Article  CAS  PubMed  Google Scholar 

  12. Wooten EW. Calculation of physiological acid-base parameters in multicompartment systems with application to human blood. J Appl Physiol. 2003;95(6):2333–44.

    Article  PubMed  Google Scholar 

  13. Fidkowski C, Helstrom J. Diagnosing metabolic acidosis in the critically ill: bridging the anion gap, Stewart, and base excess methods. Can J Anaesth. 2009;56:247–56.

    Article  PubMed  Google Scholar 

  14. Kellum JA. Clinical review: reunification of acid-base physiology. Crit Care. 2005;9(5):500–7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kurtz I, Kraut J, Ornekian V, Nguyen MK. Acid-base analysis: a critique of the Stewart and bicarbonate-centered approaches. Am J Physiol Renal Physiol. 2008;294(5):F1009–31.

    Article  CAS  PubMed  Google Scholar 

  16. Stewart PA. Modern quantitative acid-base chemistry. Can J Physiol Pharmacol. 1983;61(12):1444–61.

    Article  CAS  PubMed  Google Scholar 

  17. Kellum JA. Determinants of blood pH in health and disease. Crit Care. 2000;4(1):6–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sirker AA, Rhodes A, Grounds RM, Bennett ED. Acid-base physiology: the ‘traditional’ and the ‘modern’ approaches. Anaesthesia. 2002;57(4):348–56.

    Article  CAS  PubMed  Google Scholar 

  19. Wooten EW. Science review: quantitative acid-base physiology using the Stewart model. Crit Care. 2004;8(6):448–52.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kellum JA. Disorders of acid-base balance. Crit Care Med. 2007;35(11):2630–6.

    Article  PubMed  Google Scholar 

  21. Corey HE. Bench-to-bedside review: fundamental principles of acid-base physiology. Crit Care. 2005;9(2):184–92.

    Article  PubMed  Google Scholar 

  22. Jones NL. A quantitative physicochemical approach to acid-base physiology. Clin Biochem. 1990;23(3):189–95.

    Article  CAS  PubMed  Google Scholar 

  23. Leblanc Martine KJ. Biochemical and biophysical principles of hydrogen ion regulation. In: Critical care nephrology. Philadelphia: Saunders; 1998. p. 261–77.

    Chapter  Google Scholar 

  24. Hansen JE, Sue DY. Should blood gas measurement be corrected for the patient’s temperature? N Engl J Med. 1980;303(6):341.

    CAS  PubMed  Google Scholar 

  25. Delaney KA, Howland MA, Vassallo S, Goldfrank LR. Assessment of acid-base disturbances in hypothermia and their physiologic consequences. Ann Emerg Med. 1989;18(1):72–82.

    Article  CAS  PubMed  Google Scholar 

  26. Narins RG, Emmett M. Simple and mixed acid-base disorders: a practical approach. Medicine. 1980;59(3):161–87.

    Article  CAS  PubMed  Google Scholar 

  27. Figge J, Mydosh T, Fencl V. Serum proteins and acid-base equilibria: a follow-up. J Lab Clin Med. 1992;120(5):713–9.

    CAS  PubMed  Google Scholar 

  28. Sadjadi SA. A new range for the anion gap. Ann Intern Med. 1995;123(10):807.

    Article  CAS  PubMed  Google Scholar 

  29. Winter SD, Pearson JR, Gabow PA, Schultz AL, Lepoff RB. The fall of the serum anion gap. Arch Intern Med. 1990;150(2):311–3.

    Article  CAS  PubMed  Google Scholar 

  30. Harrison TR. Harrison’s principles of internal medicine. In: Braunwald E, Isselbacher KJ, Petersdorp RG, editors. Acidosis and alkalosis. 11th ed. New York: McGraw-Hill; 1987.

    Google Scholar 

  31. Salem MM, Mujais SK. Gaps in the anion gap. Arch Intern Med. 1992;152(8):1625–9.

    Article  CAS  PubMed  Google Scholar 

  32. Oster JR, Perez GO, Materson BJ. Use of the anion gap in clinical medicine. South Med J. 1988;81(2):229–37.

    Article  CAS  PubMed  Google Scholar 

  33. Gabow PA. Disorders associated with an altered anion gap. Kidney Int. 1985;27(2):472–83.

    Article  CAS  PubMed  Google Scholar 

  34. Whelton A, Carter GG, Garth MA, Darwish MO, Walker WG. Carbenicillin-induced acidosis and seizures. JAMA. 1971;218(13):1942–3.

    Article  CAS  PubMed  Google Scholar 

  35. Kang Y, Aggarwal S, Virji M, Pasculle AW, Lewis JH, Freeman JA, Martin LK. Clinical evaluation of autotransfusion during liver transplantation. Anesth Analg. 1991;72(1):94–100.

    Article  CAS  PubMed  Google Scholar 

  36. Narins R. Metabolic acid-base disorders: pathophysiology, classification and treatment. In: Fluid, electrolyte, and acid-base disorders. New York: Churchill Livingstone; 1985. p. 269–384.

    Google Scholar 

  37. Arieff AI, Carroll HJ. Nonketotic hyperosmolar coma with hyperglycemia: clinical features, pathophysiology, renal function, acid-base balance, plasma-cerebrospinal fluid equilibria and the effects of therapy in 37 cases. Medicine. 1972;51(2):73–94.

    Article  CAS  PubMed  Google Scholar 

  38. Mecher C, Rackow EC, Astiz ME, Weil MH. Unaccounted for anion in metabolic acidosis during severe sepsis in humans. Crit Care Med. 1991;19(5):705–11.

    Article  CAS  PubMed  Google Scholar 

  39. Gilfix BM, Bique M, Magder S. A physical chemical approach to the analysis of acid-base balance in the clinical setting. J Crit Care. 1993;8(4):187–97.

    Article  CAS  PubMed  Google Scholar 

  40. Kellum JA, Kramer DJ, Pinsky MR. Strong ion gap: a methodology for exploring unexplained anions. J Crit Care. 1995;10(2):51–5.

    Article  CAS  PubMed  Google Scholar 

  41. Kirschbaum B. Increased anion gap after liver transplantation. Am J Med Sci. 1997;313(2):107–10.

    CAS  PubMed  Google Scholar 

  42. Kellum JA, Bellomo R, Kramer DJ, Pinsky MR. Hepatic anion flux during acute endotoxemia. J Appl Physiol. 1995;78(6):2212–7.

    Article  CAS  PubMed  Google Scholar 

  43. Mehta KK, Janes A, Carlson RW. The relationship between anion gap and elevated lactate. Crit Care Med. 1986;14(4):405.

    Article  Google Scholar 

  44. Schlichtig R. [Base excess] vs [strong ion difference]. Which is more helpful? Adv Exp Med Biol. 1997;411:91–5.

    Article  CAS  PubMed  Google Scholar 

  45. Kaplan LJ, Kellum JA. Comparison of acid-base models for prediction of hospital mortality after trauma. Shock. 2008;29(6):662–6.

    CAS  PubMed  Google Scholar 

  46. Mizock BA, Falk JL. Lactic acidosis in critical illness. Crit Care Med. 1992;20(1):80–93.

    Article  CAS  PubMed  Google Scholar 

  47. Weil MH, Afifi AA. Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (shock). Circulation. 1970;41(6):989–1001.

    Article  CAS  PubMed  Google Scholar 

  48. Blair E. Acid-base balance in bacteremic shock. Arch Intern Med. 1971;127(4):731–9.

    Article  CAS  PubMed  Google Scholar 

  49. Madias NE. Lactic acidosis. Kidney Int. 1986;29(3):752–74.

    Article  CAS  PubMed  Google Scholar 

  50. van Lambalgen AA, Runge HC, van den Bos GC, Thijs LG. Regional lactate production in early canine endotoxin shock. Am J Phys. 1988;254(1 Pt 1):E45–51.

    Google Scholar 

  51. Cain SM, Curtis SE. Systemic and regional oxygen uptake and delivery and lactate flux in endotoxic dogs infused with dopexamine. Crit Care Med. 1991;19(12):1552–60.

    Article  CAS  PubMed  Google Scholar 

  52. Suetrong B, Walley KR. Lactic acidosis in sepsis: It’s not all anaerobic: implications for diagnosis and management. Chest. 2016;149(1):252–61. PubMed PMID: 26378980.

    Article  PubMed  Google Scholar 

  53. National Center for Biotechnology Information. PubChem Database. Lactic acid, CID=612. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/lactic_acid.

  54. Zilva JF. The origin of the acidosis in hyperlactataemia. Ann Clin Biochem. 1978;15(1):40–3. PubMed PMID: 24406.

    Article  CAS  PubMed  Google Scholar 

  55. Robergs RA, McNulty CR, Minett GM, Holland J, Trajano G. Lactate, not lactic acid, is produced by cellular cytosolic energy catabolism. Physiology. 2018;33(1):10–2. PubMed PMID: 29212886.

    Article  CAS  PubMed  Google Scholar 

  56. Dennis SC, Gevers W, Opie LH. Protons in ischemia: where do they come from; where do they go to? J Mol Cell Cardiol. 1991;23(9):1077–86. PubMed PMID: 1658348.

    Article  CAS  PubMed  Google Scholar 

  57. Brown SD, Clark C, Gutierrez G. Pulmonary lactate release in patients with sepsis and the adult respiratory distress syndrome. J Crit Care. 1996;11(1):2–8.

    Article  CAS  PubMed  Google Scholar 

  58. Kellum JA, Kramer DJ, Mankad S, Bellomo R, Lee K, Pinsky MR. Release of lactate by the lung in acute lung injury. Chest. 1997;111(5):1301–5.

    Article  CAS  PubMed  Google Scholar 

  59. Connett RJ, et al. Defining hypoxia: a systems view of VO2, glycolysis, energetics, and intracellular PO2. J Appl Physiol. 1990;68(3):833–42.

    Article  CAS  PubMed  Google Scholar 

  60. Levy B, Bollaert PE, Charpentier C, Nace L, Audibert G, Bauer P, Nabet P, Larcan A. Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: a prospective, randomized study. Intensive Care Med. 1997;23(3):282–7.

    Article  CAS  PubMed  Google Scholar 

  61. De Backer D. Lactic acidosis. Intensive Care Med. 2003;29(5):699–702.

    Article  PubMed  Google Scholar 

  62. De Backer D, Creteur J, Zhang H, Norrenberg M, Vincent JL. Lactate production by the lungs in acute lung injury. Am J Respir Crit Care Med. 1997;156(4 Pt 1):1099–104.

    Article  PubMed  Google Scholar 

  63. Stacpoole PW. Lactic acidosis and other mitochondrial disorders. Metabolism. 1997;46(3):306–21.

    Article  CAS  PubMed  Google Scholar 

  64. Fink MP. Does tissue acidosis in sepsis indicate tissue hypoperfusion? Intensive Care Med. 1996;22(11):1144–6.

    Article  CAS  PubMed  Google Scholar 

  65. Gutierrez G, Wulf ME. Lactic acidosis in sepsis: a commentary. Intensive Care Med. 1996;22(1):6–16.

    Article  CAS  PubMed  Google Scholar 

  66. Kilpatrick-Smith L, Kilpatrick-Smith L, Deas J, Erecińska M, Silver IA. Cellular effects of endotoxin in vitro. II. Reversibility of endotoxic damage. Circ Shock. 1983;11(2):101–11.

    CAS  PubMed  Google Scholar 

  67. Gore DC, Jahoor F, Hibbert JM, DeMaria EJ. Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability. Ann Surg. 1996;224(1):97–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bearn AG, Billing B, Sherlock S. The effect of adrenaline and noradrenaline on hepatic blood flow and splanchnic carbohydrate metabolism in man. J Physiol. 1951;115(4):430–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zilva JF. The origin of acidosis in hyperlactatemia. Ann Clin Biochem. 1978;15:40–3.

    Article  CAS  PubMed  Google Scholar 

  70. Madias NE, Homer SM, Johns CA, Cohen JJ. Hypochloremia as a consequence of anion gap metabolic acidosis. J Lab Clin Med. 1984;104(1):15–23.

    CAS  PubMed  Google Scholar 

  71. Cohen RD, Woods HF. Lactic acidosis revisited. Diabetes. 1983;32(2):181–91.

    Article  CAS  PubMed  Google Scholar 

  72. Kreisberg RA. Lactate homeostasis and lactic acidosis. Ann Intern Med. 1980;92(2 Pt 1):227–37.

    Article  CAS  PubMed  Google Scholar 

  73. Uribarri J, Oh MS, Carroll HJ. D-lactic acidosis. A review of clinical presentation, biochemical features, and pathophysiologic mechanisms. Medicine. 1998;77(2):73–82.

    Article  CAS  PubMed  Google Scholar 

  74. Forsythe SM, Schmidt GA. Sodium bicarbonate for the treatment of lactic acidosis. Chest. 2000;117(1):260–7.

    Article  CAS  PubMed  Google Scholar 

  75. Graf H, Leach W, Arieff AI. Evidence for a detrimental effect of bicarbonate therapy in hypoxic lactic acidosis. Science. 1985;227(4688):754–6.

    Article  CAS  PubMed  Google Scholar 

  76. Rhee KH, Toro LO, McDonald GG, Nunnally RL, Levin DL. Carbicarb, sodium bicarbonate, and sodium chloride in hypoxic lactic acidosis. Effect on arterial blood gases, lactate concentrations, hemodynamic variables, and myocardial intracellular pH. Chest. 1993;104(3):913–8.

    Article  CAS  PubMed  Google Scholar 

  77. Magder S. Pathophysiology of metabolic acid-base disturbances in patients with critical illness. In: Critical care nephrology. Philadelphia: Saunders; 1998. p. 279–96.

    Chapter  Google Scholar 

  78. Alberti KG. Diabetic emergencies. Br Med Bull. 1989;45(1):242–63.

    Article  CAS  PubMed  Google Scholar 

  79. Duhon B, Attridge RL, Franco-Martinez AC, Maxwell PR, Hughes DW. Intravenous sodium bicarbonate therapy in severely acidotic diabetic ketoacidosis. Ann Pharmacother. 2013;47(7–8):970–5. PubMed PMID: 23737516.

    Article  PubMed  CAS  Google Scholar 

  80. Gattinoni L, Carlesso E, Maiocchi G, Polli F, Cadringher P. Dilutional acidosis: where do the protons come from? Intensive Care Med. 2009;35(12):2033–43. PubMed PMID: 19763537.

    Article  PubMed  Google Scholar 

  81. Bakerman S, Bakerman P, Strausbauch P. ABC’s of interpretive laboratory data. In: Bakerman’s ABC’s of interpretive laboratory data. 4th ed. Scottsdale, AZ: Interpretive Laboratory Data; 2002.

    Google Scholar 

  82. Androque HJ, Tannen RL. Fluids and electrolytes. In: Kokko JP, Tannen RL, editors. Ketoacidosis, hyperosmolar states, and lactic acidosis. Philadelphia: WB Saunders; 1996.

    Google Scholar 

  83. Good DW. Regulation of bicarbonate and ammonium absorption in the thick ascending limb of the rat. Kidney Int Suppl. 1991;33:S36–42.

    CAS  PubMed  Google Scholar 

  84. Fulop M. Alcoholic ketoacidosis. Endocrinol Metab Clin N Am. 1993;22(2):209–19.

    Article  CAS  Google Scholar 

  85. Wrenn KD, Slovis CM, Minion GE, Rutkowski R. The syndrome of alcoholic ketoacidosis. Am J Med. 1991;91(2):119–28.

    Article  CAS  PubMed  Google Scholar 

  86. Proudfoot AT, Krenzelok EP, Brent J, Vale JA. Does urine alkalinization increase salicylate elimination? If so, why? Toxicol Rev. 2003;22(3):129–36.

    Article  CAS  PubMed  Google Scholar 

  87. Whiteney GM, Szerlip HM. Acid base and electrolyte disorders. In: Dubose Jr TD, Hamm LL, editors. Acid-base disorders in the critical care setting. Philadelphia: WB Saunders; 2002.

    Google Scholar 

  88. Fraser AD. Clinical toxicologic implications of ethylene glycol and glycolic acid poisoning. Ther Drug Monit. 2002;24(2):232–8.

    Article  CAS  PubMed  Google Scholar 

  89. Widmer B, Gerhardt RE, Harrington JT, Cohen JJ. Serum electrolyte and acid base composition. The influence of graded degrees of chronic renal failure. Arch Intern Med. 1979;139(10):1099–102.

    Article  CAS  PubMed  Google Scholar 

  90. Harrington JT, Cohen JJ. Metabolic acidosis. In: Kasirer JP, Cohen JJ, editors. Acid-base. Boston: Little, Brown and Co; 1982.

    Google Scholar 

  91. Liborio AB, Daher EF, de Castro MC. Characterization of acid-base status in maintenance hemodialysis: physicochemical approach. J Artif Organs. 2008;11(3):156–9.

    Article  CAS  PubMed  Google Scholar 

  92. Abassi ZA, Hoffman A, Better OS. Acute renal failure complicating muscle crush injury. Semin Nephrol. 1998;18(5):558–65.

    CAS  PubMed  Google Scholar 

  93. Noritomi DT, Soriano FG, Kellum JA, Cappi SB, Biselli PJ, Libório AB, Park M. Metabolic acidosis in patients with severe sepsis and septic shock: a longitudinal quantitative study. Crit Care Med. 2009;37(10):2733–9.

    Article  CAS  PubMed  Google Scholar 

  94. Forni LG, McKinnon W, Lord GA, Treacher DF, Peron JM, Hilton PJ. Circulating anions usually associated with the Krebs cycle in patients with metabolic acidosis. Crit Care. 2005;9(5):R591–5.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Forni LG, McKinnon W, Hilton PJ. Unmeasured anions in metabolic acidosis: unravelling the mystery. Crit Care. 2006;10(4):220.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Martin M, Murray J, Berne T, Demetriades D, Belzberg H. Diagnosis of acid-base derangements and mortality prediction in the trauma intensive care unit: the physiochemical approach. J Trauma. 2005;58(2):238–43.

    Article  PubMed  Google Scholar 

  97. Rocktaeschel J, Morimatsu H, Uchino S, Bellomo R. Unmeasured anions in critically ill patients: can they predict mortality? Crit Care Med. 2003;31(8):2131–6.

    Article  CAS  PubMed  Google Scholar 

  98. Kaplan LJ, Kellum JA. Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Crit Care Med. 2004;32(5):1120–4.

    Article  CAS  PubMed  Google Scholar 

  99. Mikulaschek A, Henry SM, Donovan R, Scalea TM. Serum lactate is not predicted by anion gap or base excess after trauma resuscitation. J Trauma. 1996;40(2):218–22. discussion 222–4.

    Article  CAS  PubMed  Google Scholar 

  100. Iberti TJ, Leibowitz AB, Papadakos PJ, Fischer EP. Low sensitivity of the anion gap as a screen to detect hyperlactatemia in critically ill patients. Crit Care Med. 1990;18(3):275–7.

    Article  CAS  PubMed  Google Scholar 

  101. Husain FA, Martin MJ, Mullenix PS, Steele SR, Elliott DC. Serum lactate and base deficit as predictors of mortality and morbidity. Am J Surg. 2003;185(5):485–91.

    Article  PubMed  Google Scholar 

  102. Rutherford EJ, Morris JA Jr, Reed GW, Hall KS. Base deficit stratifies mortality and determines therapy. J Trauma. 1992;33(3):417–23.

    Article  CAS  PubMed  Google Scholar 

  103. Davis JW, Kaups KL, Parks SN. Base deficit is superior to pH in evaluating clearance of acidosis after traumatic shock. J Trauma. 1998;44(1):114–8.

    Article  CAS  PubMed  Google Scholar 

  104. Davis JW, Kaups KL. Base deficit in the elderly: a marker of severe injury and death. J Trauma. 1998;45(5):873–7.

    Article  CAS  PubMed  Google Scholar 

  105. Abramson D, Scalea TM, Hitchcock R, Trooskin SZ, Henry SM, Greenspan J. Lactate clearance and survival following injury. J Trauma. 1993;35(4):584–8. discussion 588–9.

    Article  CAS  PubMed  Google Scholar 

  106. Gunnerson KJ. Clinical review: the meaning of acid-base abnormalities in the intensive care unit part I - epidemiology. Crit Care. 2005;9(5):508–16.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gunnerson KJ, Saul M, He S, Kellum JA. Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Crit Care. 2006;10(1):R22.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Batlle DC, Hizon M, Cohen E, Gutterman C, Gupta R. The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis. N Engl J Med. 1988;318(10):594–9.

    Article  CAS  PubMed  Google Scholar 

  109. Jovaisa T, Vicka V, Linkaite G, Guseinovaite J, Ringaitiene D, Norkiene I. Use of lactated ringers solution does not eliminate the risk of strong ion difference-related metabolic acidosis following on-pump cardiac surgery. J Biol Regul Homeost Agents. 2016;30(4):1085–90. PubMed PMID: 28078858.

    CAS  PubMed  Google Scholar 

  110. Ring T, Frische S, Nielsen S. Clinical review: renal tubular acidosis–a physicochemical approach. Crit Care. 2005;9(6):573–80.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kushner RF. Total parenteral nutrition-associated metabolic acidosis. JPEN J Parenter Enteral Nutr. 1986;10(3):306–10. PubMed PMID: 3086592.

    Article  CAS  PubMed  Google Scholar 

  112. Dounousi E, Zikou X, Koulouras V, Katopodis K. Metabolic acidosis during parenteral nutrition: pathophysiological mechanisms. Indian J Crit Care Med. 2015;19(5):270–4. PubMed PMID: 25983433. Pubmed Central PMCID: 4430745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cheek DB. Changes in total chloride and acid-base balance in gastroenteritis following treatment with large and small loads of sodium chloride. Pediatrics. 1956;17(6):839–48.

    CAS  PubMed  Google Scholar 

  114. Shires GT, Holman J. Dilution acidosis. Ann Intern Med. 1948;28(3):557–9.

    Article  CAS  PubMed  Google Scholar 

  115. Garella S, Chang BS, Kahn SI. Dilution acidosis and contraction alkalosis: review of a concept. Kidney Int. 1975;8(5):279–83.

    Article  CAS  PubMed  Google Scholar 

  116. Garella S, Tzamaloukas AH, Chazan JA. Effect of isotonic volume expansion on extracellular bicarbonate stores in normal dogs. Am J Phys. 1973;225(3):628–36.

    Article  CAS  Google Scholar 

  117. Waters JH, Bernstein CA. Dilutional acidosis following hetastarch or albumin in healthy volunteers. Anesthesiology. 2000;93(5):1184–7.

    Article  CAS  PubMed  Google Scholar 

  118. Waters JH, Miller LR, Clack S, Kim JV. Cause of metabolic acidosis in prolonged surgery. Crit Care Med. 1999;27(10):2142–6.

    Article  CAS  PubMed  Google Scholar 

  119. Wilkes NJ, Woolf R, Mutch M, Mallett SV, Peachey T, Stephens R, Mythen MG. The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg. 2001;93(4):811–6.

    Article  CAS  PubMed  Google Scholar 

  120. Kellum JA, Bellomo R, Kramer DJ, Pinsky MR. Etiology of metabolic acidosis during saline resuscitation in endotoxemia. Shock. 1998;9(5):364–8.

    Article  CAS  PubMed  Google Scholar 

  121. Gattinoni L, Carlesso E, Maiocchi G, Polli F, Cadringher P. Dilutional acidosis: where do the protons come from? Intensive Care Med. 2009;35(12):2033–43.

    Article  PubMed  Google Scholar 

  122. Doberer D, Funk GC, Kirchner K, Schneeweiss B. A critique of Stewart’s approach: the chemical mechanism of dilutional acidosis. Intensive Care Med. 2009;35(12):2173–80.

    Article  PubMed  Google Scholar 

  123. Ring T. Mixing bicarbonates: dilution acidosis from first principles. Intensive Care Med. 2009;35(12):2183–4; author reply 2185–6

    Article  PubMed  Google Scholar 

  124. Kellum JA. Recent advances in acid-base physiology applied to critical care. In: Vincent J-L, editor. Yearbook of intensive care and emergency medicine. Heidelberg: Springer; 1998.

    Google Scholar 

  125. Morgan TJ, Venkatesh B, Hall J. Crystalloid strong ion difference determines metabolic acid-base change during in vitro hemodilution. Crit Care Med. 2002;30(1):157–60.

    Article  CAS  PubMed  Google Scholar 

  126. Gilbert EM, Haupt MT, Mandanas RY, Huaringa AJ, Carlson RW. The effect of fluid loading, blood transfusion, and catecholamine infusion on oxygen delivery and consumption in patients with sepsis. Am Rev Respir Dis. 1986;134(5):873–8.

    Article  CAS  PubMed  Google Scholar 

  127. Moviat M, Terpstra AM, Ruitenbeek W, Kluijtmans LA, Pickkers P, van der Hoeven JG. Contribution of various metabolites to the “unmeasured” anions in critically ill patients with metabolic acidosis. Crit Care Med. 2008;36:752–8.

    Article  CAS  PubMed  Google Scholar 

  128. Semler MW, Self WH, Wanderer JP, Ehrenfeld JM, Wang L, Byrne DW, et al. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018;378(9):829–39. PubMed PMID: 29485925. Pubmed Central PMCID: 5846085.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Lindinger MI, Heigenhauser GJ, McKelvie RS, Jones NL. Blood ion regulation during repeated maximal exercise and recovery in humans. Am J Phys. 1992;262(1 Pt 2):R126–36.

    CAS  Google Scholar 

  130. Forrest David WK, Russell J. Impact of acid-base disorders on individual organ systems. In: Critical care nephrology. Philadelphia: Saunders; 1998. p. 313–26.

    Chapter  Google Scholar 

  131. Hickling KG, Walsh J, Herderson S, Jackson R. Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med. 1994;22:1568–78.

    Article  CAS  PubMed  Google Scholar 

  132. Gunnerson KJ, Srisawat N, Kellum JA. Is there a difference between strong ion gap in healthy volunteers and intensive care unit patients? J Crit Care. 2010;25:520–4.

    Article  CAS  PubMed  Google Scholar 

  133. Gehlbach BK, Schmidt GA. Bench-to-bedside review: treating acid-base abnormalities in the intensive care unit – the role of buffers. Crit Care. 2004;8:259–65.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kette F, Weil MH, Gazmuri RJ. Buffer solutions may compromise cardiac resuscitation by reducing coronary perfusion pressure. JAMA. 1991;266:2121–6.

    Article  CAS  PubMed  Google Scholar 

  135. Hindman BJ. Sodium bicarbonate in the treatment of subtypes of acute lactic acidosis: physiologic considerations. Anesthesiology. 1990;72:1064–76.

    Article  CAS  PubMed  Google Scholar 

  136. Bersin RM, Arieff AI. Improved hemodynamic function during hypoxia with Carbicarb, a new agent for the management of acidosis. Circulation. 1988;77:227–33.

    Article  CAS  PubMed  Google Scholar 

  137. Spital Aaron GS. Correction of acid-base derangements. In: Critical care nephrology. Philadelphia: Saunders; 1998. p. 327–44.

    Chapter  Google Scholar 

  138. Stacpoole PW, Moore GW, Baumgartner TG, Bersin RM, Buchalter S, Curry SH, et al. A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. The Dichloroacetate-Lactic Acidosis Study Group. N Engl J Med. 1992;327:1564–9.

    Article  CAS  PubMed  Google Scholar 

  139. Stacpoole PW, Moore GW, Kornhauser DM. Toxicity of chronic dichloroacetate. N Engl J Med. 1979;300:372.

    CAS  PubMed  Google Scholar 

  140. Bleich HL, Schwartz WB. Tris buffer (THAM). An appraisal of its physiologic effects and clinical usefulness. N Engl J Med. 1966;274(14):782–7.

    Article  CAS  PubMed  Google Scholar 

  141. Arieff AI. Bicarbonate therapy in the treatment of metabolic acidosis. In: Chernow B, editor. The pharmacologic approach to the critically ill patient. Philadelphia: Williams & Wilkins; 1994.

    Google Scholar 

  142. Gattinoni L, Lissoni A. Pathophysiology and diagnosis of respiratory acid-base disturbances in patients with critical illness. In: Critical care nephrology. Philadelphia: Saunders; 1998. p. 297–311.

    Chapter  Google Scholar 

  143. Rose BD, Post TW. Clinical physiology of acid-base and electrolyte disorders. 5th ed. New York: McGraw-Hill, Medical Pub. Division; 2001. x, 992 pp.

    Google Scholar 

  144. Brochard L, Mancebo J, Wysocki M, Lofaso F, Conti G, Rauss A, et al. Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med. 1995;333:817–22.

    Article  CAS  PubMed  Google Scholar 

  145. Tsuno K, Miura K, Takeya M, Kolobow T, Morioka T. Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis. 1991;143(5 Pt 1):1115–20.

    Article  CAS  PubMed  Google Scholar 

  146. Sugiura M, McCulloch PR, Wren S, Dawson RH, Froese AB. Ventilator pattern influences neutrophil influx and activation in atelectasis-prone rabbit lung. J Appl Physiol. 1985;77:1355–65.

    Article  Google Scholar 

  147. [no authors listed]. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.

    Article  Google Scholar 

  148. Gennari FJ. Acid-base. In: Cohen JJ, editor. Respiratory alkalosis. Boston: Little Brown and Co.; 1982.

    Google Scholar 

  149. Cohen JJ, Madias NE, Wolf CJ, Schwartz WB. Regulation of acid-base equilibrium in chronic hypocapnia. Evidence that the response of the kidney is not geared to the defense of extracellular (H+). J Clin Invest. 1976;57:1483–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Adrogue HJ, Madias NE. Management of life-threatening acid-base disorders. Second of two parts. N Engl J Med. 1998;338(2):107–11.

    Article  CAS  PubMed  Google Scholar 

  151. Ashley SW, editor. ACS surgery: principles and practice. Hamilton, ON: B. C. Decker; 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh “ Mitu” Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reed, C.R., Liepert, A., Agarwal, S.“.M. (2020). Acid–Base Physiology. In: Davis, K., Rosenbaum, S. (eds) Surgical Metabolism. Springer, Cham. https://doi.org/10.1007/978-3-030-39781-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39781-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39780-7

  • Online ISBN: 978-3-030-39781-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation