Protein Interaction Analysis by Surface Plasmon Resonance

  • Protocol
  • First Online:
Advanced Methods in Structural Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2652))

  • 1384 Accesses

Abstract

Surface plasmon resonance (SPR) is an optical technique that is utilized for detecting molecular interactions that occur in direct protein-protein interactions. Binding of a mobile molecule (analyte) to a molecule immobilized on a thin metal film (ligand) changes the refractive index of the film. The angle of extinction of light that is completely reflected, after polarized light im**es upon the surface, is altered and monitored as a change in detector position for a dip in reflected intensity (the surface plasmon resonance phenomenon). Because the method strictly detects mass, there is no need to label the interacting components, thus eliminating possible changes of their molecular properties. One of the advantages in SPR is its high sensitivity, compatible with the need for purification of small amounts of protein for analysis. This chapter concentrates on practical methodologies for performing surface plasmon resonance analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 169.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schuck P (1997) Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu Rev Biophys Struct 26:541–566

    Article  CAS  Google Scholar 

  2. Panagiotis L, Kastritis PL, Bonvin AM (2012) On the binding affinity of macromolecular interactions: daring to ask why proteins interact. J R Soc Interface 10:1–27

    Google Scholar 

  3. Ramakrishnan NA, Drescher MJ, Sheikhali SA et al (2006) Molecular identification of an N-type Ca2+ channel in saccular hair cells. Neuroscience 139:1417–1434

    Article  CAS  PubMed  Google Scholar 

  4. Florinskaya A, Ershov P, Mezentsev Y et al (2018) SPR biosensors in direct molecular fishing: implications for protein interactomics. Sensors 18:1616–1626

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nguyen HH, Park J, Kang S et al (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15:10481–10510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Drescher DG, Selvakumar D, Drescher MJ (2018) Chapter 1. Analysis of protein interactions by surface plasmon resonance. In: Protein-protein interactions in human disease, Part A, Vol 110. Advances in protein chemistry and structural biology, Ed. Donev R, Elsevier, 488 pp

    Google Scholar 

  7. Rich RL, Myszka DG (2000) Advances in surface plasmon resonance biosensor analysis. Curr Opin Biotechnol 11:54–61

    Article  CAS  PubMed  Google Scholar 

  8. Kowalczyk C, Dunkel N, Willen L et al (2011) Molecular and therapeutic characterization of anti-ectodysplasin A receptor (EDAR) agonist monoclonal antibodies. J Biol Chem 286:30769–30779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Forest-Nault C, Gaudreault J, Henry O et al (2021) On the use of surface plasmon resonance biosensing to understand IgG-FcγR interactions. Int J Mol Sci 22:6616–6642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kamal Eddin FB, Fen YW (2020) The principle of nanomaterials based surface plasmon resonance biosensors and its potential for dopamine detection. Molecules 25:2769–2788

    Article  PubMed  PubMed Central  Google Scholar 

  11. Aristotelous T, Ahn S, Shukla AK et al (2013) Discovery of β2 adrenergic receptor ligands using biosensor fragment screening of tagged wild-type receptor. ACS Med Chem Lett 4:1005–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mariani S, Minunni M (2014) Surface plasmon resonance applications in clinical analysis. Anal Bioanal Chem 406:2303–2323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bellassai N, D’Agata R, Jungbluth V et al (2019) Surface plasmon resonance for biomarker detection: advances in non-invasive cancer diagnosis. Front Chem 7:570–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gade A, Sharma A, Srivastava N et al (2022) Surface plasmon resonance: a promising approach for label-free early cancer diagnosis. Clin Chim Acta 527:79–88

    Article  CAS  PubMed  Google Scholar 

  15. Babaei A, Pouremamali A, Rafiee N et al (2022) Genosensors as an alternative diagnostic sensing approaches for specific detection of virus species: a review of common techniques and outcomes. Trends Analyt Chem 155:1–22

    Article  Google Scholar 

  16. Abid SA, Ahmed Muneer A, Al-Kadmy IMS et al (2021) Biosensors as a future diagnostic approach for COVID-19. Life Sci 273:1–6

    Article  Google Scholar 

  17. Episentec Application Note # 020 Label-Enhanced SPR (2015) Label-Enhanced SPR: A primer on technology & applications. EAN 020-02-15-03-01

    Google Scholar 

  18. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Naturforsch Teil A 23:2135–2136

    Article  CAS  Google Scholar 

  19. Karlsson R, Roos H, Fägerstam L et al (1994) Kinetic and concentration analysis using BIA technology. Methods 6:99–110

    Article  CAS  Google Scholar 

  20. Stenberg E, Persson B, Roos H et al (1991) Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J Colloid Interface Sci 143:513–526

    Article  CAS  Google Scholar 

  21. Gopinath SCB (2010) Biosensing applications of surface plasmon resonance-based Biacore technology. Sensors Actuators B 150:722–733

    Article  CAS  Google Scholar 

  22. Johnsson B, Lofas S, Lindquist G (1991) Immobilization of proteins to a carboxy-methyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem 198:268–277

    Article  CAS  PubMed  Google Scholar 

  23. Myszka DG, He X, Dembo M et al (1998) Extending the range of rate constants available from BIACORE: interpreting mass transport-influenced binding data. Biophys J 75:583–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Steffner P, Markey F (1997) When the chips are down. BIA J 1:11–15

    Google Scholar 

  25. Schuck P, Zhao H (2010) The role of mass transport limitation and surface heterogeneity in the biophysical characterization of macromolecular binding processes by SPR biosensing. Methods Mol Biol 627:15–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. BIACORE (1998) BIA evaluation version 3 software handbook. Chapter 4: Evaluating kinetic data, 4.1–4.31. Chapter 5: evaluating concentration data, 5.1–5.10

    Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R01 DC000156, NIH grant R01 DC004076, and the Jain Foundation. We thank Neeraja Priyanka Annam and Darshi Hemani for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis G. Drescher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Drescher, D.G., Drescher, M.J. (2023). Protein Interaction Analysis by Surface Plasmon Resonance. In: Sousa, Â., Passarinha, L. (eds) Advanced Methods in Structural Biology. Methods in Molecular Biology, vol 2652. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3147-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3147-8_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3146-1

  • Online ISBN: 978-1-0716-3147-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation