Surface Plasmon Resonance: A Sensitive Tool to Study Protein–Protein Interactions

  • Protocol
  • First Online:
Bacterial Secretion Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2715))

  • 1051 Accesses

Abstract

Surface plasmon resonance (SPR) is one of the most commonly used techniques to study protein–protein interactions. The main advantage of SPR is the ability of measuring binding affinities and association/dissociation kinetics of complexes in real time, in a label-free environment, and using relatively small quantities of materials. The method is based on the immobilization of one of the binding partners, called the “ligand,” on a dedicated sensor surface. Immobilization is followed by the injection of the other partner, called the “analyte,” over the surface containing the ligand. The binding is monitored by following changes in the refractive index of the medium close to the sensor surface upon injection of the analyte. During the last 15 years, SPR has been intensively used in the study of bacterial secretion systems due to its ability of detecting highly dynamic complexes, which are difficult to investigate by other techniques. This chapter will guide users in setting up SPR experiments in order to identify protein complexes and to assess their binding affinity and/or kinetics. It will include detailed protocols for (i) immobilization of proteins with the amine coupling capture method, (ii) analyte-binding analysis, (iii) affinity/kinetics measurements, and (iv) data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barison N, Lambers J, Hurwitz et al (2012) Interaction of MxiG with the cytosolic complex of the type III secretion system controls Shigella virulence. FASEB J 26:1717–1726

    Article  CAS  PubMed  Google Scholar 

  2. Benabdelhak H, Kiontke S, Horn C (2003) A specific interaction between the NBD of the ABC-transporter HlyB and a C-terminal fragment of its transport substrate haemolysin A. J Mol Biol 327:1169–1179

    Article  CAS  PubMed  Google Scholar 

  3. Girard V, Côté JP, Charbonneau ME et al (2010) Conformation change in a self-recognizing autotransporter modulates bacterial cell-cell interaction. J Biol Chem 285:10616–10626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schroder G, Lanka (2003) TraG-like proteins of type IV secretion systems: functional dissection of the multiple activities of TraG (RP4) and TrwB (R388). J Bacteriol 185:4371–4381

    Article  PubMed  PubMed Central  Google Scholar 

  5. Swietnicki W, O’Brien S, Holman K et al (2004) Novel protein-protein interactions of the Yersinia pestis type III secretion system elucidated with a matrix analysis by surface plasmon resonance and mass spectrometry. J Biol Chem 279:38693–38700

    Article  CAS  PubMed  Google Scholar 

  6. Zoued A, Durand E, Brunet YR et al et al (2016) Priming and polymerization of a bacterial contractile tail structure. Nature 531:59–63

    Google Scholar 

  7. Douzi B, Ball G, Cambillau C et al (2011) Deciphering the Xcp Pseudomonas aeruginosa type II secretion machinery through multiple interactions with substrates. J Biol Chem 286:40792–40801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Douzi B, Durand E, Bernard C et al (2009) The XcpV/GspI pseudopilin has a central role in the assembly of a quaternary complex within the T2SS pseudopilus. J Biol Chem 284:34580–34589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Douzi B, Spinelli S, Blangy S (2014) Crystal structure and self-interaction of the type VI secretion tail-tube protein from enteroaggregative Escherichia coli. PLoS One 9:e86918

    Article  PubMed  PubMed Central  Google Scholar 

  10. Felisberto-Rodrigues C, Durand E, Aschtgen MS et al (2011) Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathog 7:e1002386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zoued A, Durand E, Bebeacua C et al (2013) TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. J Biol Chem 288:27031–27041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pineau C, Guschinskaya N, Robert X et al (2014) Substrate recognition by the bacterial type II secretion system: more than a simple interaction. Mol Microbiol 94:126–140

    Article  CAS  PubMed  Google Scholar 

  13. Halder PK, Roy C, Datta S (2019) Structural and functional characterization of type three secretion system ATPase PscN and its regulator PscL from Pseudomonas aeruginosa. Proteins 87:276–288

    Article  CAS  PubMed  Google Scholar 

  14. Casu B, Smart J, Hancock MA (2016) Structural analysis and inhibition of TraE from the pKM101 type IV secretion system. J Biol Chem 291:23817–23829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peess C, von Proff L, Goller S et al (2015) Deciphering the stepwise binding mode of HRG1beta to HER3 by surface plasmon resonance and interaction map. PLoS One 10:e0116870

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ohlson S, Strandh M, Nilshans H (1997) Detection and characterization of weak affinity antibody antigen recognition with biomolecular interaction analysis. J Mol Recognit 1:135–138

    Article  Google Scholar 

  17. Fischer MJ (2010) Amine coupling through EDC/NHS: a practical approach. Methods Mol Biol 627:55–73

    Article  CAS  PubMed  Google Scholar 

  18. Hutsell SQ, Kimple RJ, Siderovski DP et al (2010) High-affinity immobilization of proteins using biotin- and GST-based coupling strategies. Methods Mol Biol 627:75–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khan F, He M, Taussig MJ (2006) Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on ni-nitrilotriacetic acid surfaces. Anal Chem 78:3072–3079

    Article  CAS  PubMed  Google Scholar 

  20. Della Pia EA, Martinez KL (2015) Single domain antibodies as a powerful tool for high quality surface plasmon resonance studies. PLoS One 10:e0124303

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cianfanelli FR, Monlezun L, Coulthurst SJ (2016) Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol 24:51–62

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Research Institute for Agriculture, Food, and Environment INRAE and the Université de Lorraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badreddine Douzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Douzi, B. (2024). Surface Plasmon Resonance: A Sensitive Tool to Study Protein–Protein Interactions. In: Journet, L., Cascales, E. (eds) Bacterial Secretion Systems . Methods in Molecular Biology, vol 2715. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3445-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3445-5_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3444-8

  • Online ISBN: 978-1-0716-3445-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation