Log in

A Simple Colorimetric Analytical Assay for the Determination of Tetracyclines Based on In-situ Generation of Gold Nanoparticles Coupling with a Gold Staining Technique

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The development of simple and sensitive detection methods for tetracyclines (TCs) is crucial for their routine detection. The present study developed a colorimetric method for the detection of TCs based on the in-situ generation of AuNPs, which were subsequently coupled with a gold staining reaction. Briefly, TCs containing phenolic groups reduce HAuCl4 to form gold nanoparticles (AuNPs) as gold seeds. In the gold staining process, the gold seeds catalyze the reduction of HAuCl4 by NH2OH to form gold atoms that deposit on the surface of AuNPs, resulting in the enlargement of AuNPs. Sensitive detection of TCs was achieved by employing the gold staining technique. As low as 14, 18.9, and 1.98 nM of oxytetracycline (OTC), tetracycline (TC), and doxycycline (DC), respectively, could be sensitively detected. The proposed method also exhibited good repeatability and specificity, and then was applied to the determination of OTC in milk samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. O. Griffin, E. Fricovsky, G. Ceballos, and F. Villarreal, Am. J. Physiol. Cell Physiol., 2010, 299, 539.

    Article  Google Scholar 

  2. T. Hakuta, H. Shinzawa, and Y. Ozaki, Anal. Sci., 2009, 25, 1149.

    Article  CAS  PubMed  Google Scholar 

  3. X. G. Liu, D. L. Huang, C. Lai, G. M. Zeng, L. Qin, C. Zhang, H. Yi, B. S. Li, R. Deng, S. Y. Liu, and Y. J. Zhang, TrAC, Trends Anal. Chem., 2018, 109, 260.

    Article  CAS  Google Scholar 

  4. R. W. Fedeniuk, S. Ramamurthi, and A. R. MCurdy, J. Chromatogr. B, 1996, 677, 291.

    Article  Google Scholar 

  5. L. Okerman, K. D. Wasch, and J. V. Hoof, Analyst, 1998, 123, 2361.

    Article  CAS  PubMed  Google Scholar 

  6. T. Charoenraks, S. Chuanuwatanakul, K. Honda, Y. Yamaguchi, and O. Chailapakul, Anal. Sci., 2005, 21, 241.

    Article  CAS  PubMed  Google Scholar 

  7. Z. M. Dong, L. Cheng, T. Sun, G. C. Zhao, and X. W. Kan, Anal. Methods, 2021, 13, 381.

    Article  CAS  PubMed  Google Scholar 

  8. D. M. Gonzalez, M. Krulisova, L. G. Gracia, and A. M. G. Campana, Electrophoresis, 2018, 39, 608.

    Article  Google Scholar 

  9. B. Tan, H. M. Zhao, L. Du, X. R. Gan, X. Quan, and H. W. Lin, Biosens. Bioelectron., 2016, 83, 267.

    Article  CAS  PubMed  Google Scholar 

  10. D. R. Liu, X. Y. Pan, W. Mu, C. Li, and X. J. Han, Anal. Sci., 2019, 35, 367.

    Article  CAS  PubMed  Google Scholar 

  11. Y. L. Wang, P. J. Ni, S. Jiang, W. D. Lu, Z. Li, H. M. Liu, J. Lin, Y. J. Sun, and Z. Li, Sens. Actuators, B, 2018, 254, 1118.

    Article  CAS  Google Scholar 

  12. A. Joshi and K. H. Kim, Biosens. Bioelectron., 2020, 153, 112046.

    Article  CAS  PubMed  Google Scholar 

  13. L. L. Hao, H. J. Gu, N. Duan, S. J. Wu, and Z. P. Wang, Anal. Methods, 2016, 8, 7929.

    Article  CAS  Google Scholar 

  14. S. K. Kailasa, J. R. Koduru, M. L. Desai, T. J. Park, R. K. Singhal, and H. Basu, TrAC, Trends Anal. Chem., 2018, 105, 106.

    Article  CAS  Google Scholar 

  15. Z. P. Zhang, Y. Tian, P. C. Huang, and F. Y. Wu, Talanta, 2020, 208, 120342.

    Article  CAS  PubMed  Google Scholar 

  16. Y. Y. Xu, C. H. Lu, Y. Y. Sun, Y. G. Shao, Y. Cai, Y. S. Zhang, J. F. Miao, and P. Miao, Microchim. Acta, 2018, 185, 548.

    Article  Google Scholar 

  17. Y. L. Wang, Y. J. Sun, H. C. Dai, P.J. Ni, S. Jiang, W. D. Lu, Z. Li, and Z. Li, Sens. Actuators, B, 2016, 236, 621.

    Article  CAS  Google Scholar 

  18. Y. Q. Zhao, R. X. Liu, X. Q. Cui, Q. J. Lu, M. Yu, Q. Fei, G. D. Feng, H. Y. Shan, and Y. F. Huan, Anal. Sci., 2020, 36, 1165.

    Article  CAS  PubMed  Google Scholar 

  19. H. Chen, K. Zhou, and G. H. Zhao, Trends Food Sci. Technol., 2018, 78, 83.

    Article  CAS  Google Scholar 

  20. L. Qin, G. M. Zeng, C. Lai, D. L. Huang, P. Xu, C. Zhang, M. Cheng, X. G. Liu, S. Y. Liu, B. S. Li, and H. Yi, Coord. Chem. Rev., 2018, 359, 1.

    Article  CAS  Google Scholar 

  21. S. Wu, D. Li, J. Wang, Y. Zhao, S. Dong, and X. Wang, Sens. Actuators, B, 2017, 238, 427.

    Article  CAS  Google Scholar 

  22. D. Zhong, K. C. Yang, Y. Y. Wang, and X. M. Yang, Talanta, 2017, 175, 217.

    Article  CAS  PubMed  Google Scholar 

  23. H. J. Park and S. S. Lee, Anal. Sci., 2019, 35, 883.

    Article  CAS  PubMed  Google Scholar 

  24. M. Y. Qi, C. Y. Tu, Y. Y. Dai, W. P. Wang, A. J. Wang, and J. R. Chen, Anal. Methods, 2018, 10, 3402.

    Article  CAS  Google Scholar 

  25. F. Yuan, H. Zhao, X. Wang, and X. Quan, Anal. Lett., 2017, 50, 544.

    Article  CAS  Google Scholar 

  26. C. F. Liu, Y. Wang, and C. Z. Huang, Chin. Sci. Bull., 2012, 57, 52.

    Article  Google Scholar 

  27. Y. S. Wang, P. F. Du, A. A. E. Aty, G. Chen, H. Y. Jia, X. Y. Cui, E. Oz, Y. D. Zhang, X. Y. Zhang, G. X. Qin, F. Y. Yan, J. Wang, M. J. **, and B. D. Hammock, Food Chem., 2021, 347, 129024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. K. R. Brown and M. J. Natan, Langmuir, 1998, 14, 726.

    Article  CAS  Google Scholar 

  29. J. Kwak and S. S. Lee, Nanotechnology, 2019, 30, 44.

    Article  Google Scholar 

  30. A. P. Fan, C. W. Lau, and J. L. Lu, Analyst, 2009, 134, 497.

    Article  CAS  PubMed  Google Scholar 

  31. P. Moudgil, J. S. Bedi, R. S. Aulakh, J. P. S. Gill, and A. Kumar, Food Anal. Meth., 2019, 12, 338.

    Article  Google Scholar 

  32. H. Y. Liu, H. Zhang, J. Wang, and J. F. Wei, Arbr. J. Chem., 2020, 13, 1011.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (21475094) and the Collaborative Innovation Center of Chemical Science and Engineering (Tian**).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai** Fan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, N., Li, D. & Fan, A. A Simple Colorimetric Analytical Assay for the Determination of Tetracyclines Based on In-situ Generation of Gold Nanoparticles Coupling with a Gold Staining Technique. ANAL. SCI. 37, 1583–1587 (2021). https://doi.org/10.2116/analsci.21P115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21P115

Keywords

Navigation