Log in

Simple colorimetric detection of doxycycline and oxytetracycline using unmodified gold nanoparticles

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The interaction between tetracycline antibiotics and gold nanoparticles was studied. With citrate-coated gold nanoparticles as colorimetric probe, a simple and rapid detection method for doxycycline and oxytetracycline has been developed. This method relies on the distance-dependent optical properties of gold nanoparticles. In weakly acidic buffer medium, doxycycline and oxytetracycline could rapidly induce the aggregation of gold nanoparticles, resulting in red-to-blue (or purple) colour change. The experimental parameters were optimized with regard to pH, the concentration of the gold nanoparticles and the reaction time. Under optimal experimental conditions, the linear range of the colorimetric sensor for doxycycline/oxytetracycline was 0.06–0.66 and 0.59–8.85 μg mL−1, respectively. The corresponding limit of detection for doxycycline and oxytetracycline was 0.0086 and 0.0838 μg mL−1, respectively. This assay was sensitive, selective, simple and readily used to detect tetracycline antibiotics in food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Riond and J. E. Riviere, Veterinary Human Toxicol. 30, 431 (1988).

    Google Scholar 

  2. G. Rigos, I. Nengas, M. Alexis, and G. M. Troisi, Aquat Toxicol. 69, 281 (2004).

    Article  Google Scholar 

  3. W. D. Kong, Y. G. Zhu, Y. C. Liang, J. Zhang, F. A. Smith, and M. Yang, Environ. Pollut. 147, 187 (2007).

    Article  Google Scholar 

  4. H. Fujiwara, S. Yanagida, and P. V. Kamat, Phys. Chem. 103, 2589 (1999).

    Article  Google Scholar 

  5. A. C. Templeton, D. E. Cliffel, and R. Murray, J. Am. Chem. Soc. 121, 7081 (1999).

    Article  Google Scholar 

  6. O. V. Makarova, A. E. Ostafin, H. Miyoshi, and J. R. Norris, J. Phys. Chem. B 103, 9080 (1999).

    Article  Google Scholar 

  7. S. P. Liu, Y. H. Chen, Z. F. Liu, X. L. Hu, and F. Wang, Microchim Acta 154, 87 (2006).

    Article  Google Scholar 

  8. K. Niikura, K. Nagakawa, N. Ohtake, T. Suzuki, Y. Matsuo, H. Sawa, and K. Ijiro, Bioconjug. Chem. 20, 1848 (2009).

    Article  Google Scholar 

  9. A. Laromaine, L. L. Koh, M. Murugesan, R. V. Ulijn, and M. M. Stevens, J. Am. Chem. Soc. 129, 4156 (2007).

    Article  Google Scholar 

  10. M. Cho, M. S. Han, and C. Ban, Chem. Commun. 38, 4573 (2008).

    Article  Google Scholar 

  11. C. D. Medley, J. E. Smith, Z. Tang, Y. Wu, S. Bamrungsap, and W. H. Tan, Anal. Chem. 80, 1067 (2008).

    Article  Google Scholar 

  12. L. Li, B. X. Li, Y. Y. Qi, and Y. **, Anal. Bioanal. Chem. 393, 2051 (2009).

    Article  Google Scholar 

  13. L. Li, B. X. Li, D. Cheng, and L. H. Mao, Food Chem. 122, 895 (2010).

    Article  Google Scholar 

  14. B. Roy, A. Saha, and A. K. Nandi, Analyst 136, 67 (2011).

    Article  ADS  Google Scholar 

  15. X. S. Liang, H. P. Wei, Z. Q. Cui, J. Y. Deng, Z. P. Zhang, X. Y. You, and X. E. Zhang, Analyst 136, 179 (2011).

    Article  ADS  Google Scholar 

  16. K. L. Ai, Y. L. Liu, and L. H. Lu, J. Am. Chem. Soc. 131, 9496 (2009).

    Article  Google Scholar 

  17. C. P. Han, L. L. Zeng, H. B. Li, and G. Y. **e, Sensor Actuat. B 137, 704 (2009).

    Article  Google Scholar 

  18. W. Zhao, M. A. Brook, and Y. F. Li, Chem. Bio. Chem. 9, 2363 (2008).

    Article  Google Scholar 

  19. W. Zhao, W. Chiuman, J. C. F. Lam, S. A. McManus, W. Chen, Y. G. Cui, R. Pelton, M. A. Brook, and Y. F. Li, J. Am. Chem. Soc. 130, 3610 (2008).

    Article  Google Scholar 

  20. W. Zhao, W. Chiuman, M. A. Brook, and Y. F. Li, Chem. Bio. Chem. 8, 727 (2007).

    Article  Google Scholar 

  21. Y. F. Zhang, B. X. Li, and X. L. Chen, Microchim. Acta 168, 107 (2010).

    Article  Google Scholar 

  22. G. Frens, Nature, Physical Science 241, 20 (1973).

    Article  ADS  Google Scholar 

  23. W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, Anal. Chem. 79, 4215 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiyong Wang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Fan, S., Li, Z. et al. Simple colorimetric detection of doxycycline and oxytetracycline using unmodified gold nanoparticles. Opt. Spectrosc. 117, 250–255 (2014). https://doi.org/10.1134/S0030400X14070212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X14070212

Keywords

Navigation