Log in

Sub-10-nm multicolored gold nanoparticles for colorimetric determination of antibiotics via formation of interlocking rings

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A general approach is presented for synthesis of multicolored gold nanoparticles (GNPs) by Au(I)-mediated generation of interlocking rings in proteins and antibiotics. The Au(I) ions are shuttled from proteins to antibiotics, and this causes the formation of interlocking rings. The multicolored GNPs of different sizes were synthesized in the rings by using the rapid nucleation method. To take the unique colors of GNPs, a functional array was designed for the colorimetric determination and discrimination of antibiotics, specifically of amoxicillin, chlortetracycline, erythromycin, spiramycin, neomycin, thiamphenicol, gentamycin and lincomycin. The method is based on the “three color” (RGB) principle. The color response patterns are characteristic for each antibiotic and can be quantitatively differentiated by statistical techniques. The limits of detection (LOD, at S/N = 3) for spiramycin (Sp) have been calculated to be 0.18 μM and 0.10 μM in water and milk, respectively. The good linear range (from 0.3 to 3.5 μM) has been used for the quantitative assay of Sp in a certified reference material.

Schematic presentation of gold nanoparticles (GNPs) synthesis via formation of interlocking rings in protein and antibiotics. The Au(I) ions mediate protein and antibiotics to be interlocking rings, which are quickly fixed via microwave reaction. The GNPs are synthesized and assembled in the rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Knight AS, Larsson J, Ren JM, Zerdan RB, Seguin S, Vrahas R, Liu J, Ren G, Hawker CJ (2018) Control of amphiphile self-assembly via bioinspired metal ion coordination. J Am Chem Soc 140:1409–1414

    Article  CAS  Google Scholar 

  2. Brodin JD, Ambroggio XI, Tang C, Parent KN, Baker TS, Tezcan FA (2012) Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nat Chem 4:375–382

    Article  CAS  Google Scholar 

  3. Pires MM, Chmielewski J (2009) Self-assembly of collagen peptides into microflorettes via metal coordination. J Am Chem Soc 131:2706–2712

    Article  CAS  Google Scholar 

  4. Leng Y, Jiang K, Zhang W, Wang Y (2017) Synthesis of gold nanoparticles from Au(I) ions that shuttle to solidify: application on the sensor array design. Langmuir 33:6398–6403

    Article  CAS  Google Scholar 

  5. Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T (2007) Biological containers: protein cages as multifunctional nanoplatforms. Adv Mater 19:1025–1042

    Article  Google Scholar 

  6. Zhang X, Zhang Y, Zhao H, He Y, Li X, Yuan Z (2013) Highly sensitive and selective colorimetric sensing of antibiotics in milk. Anal Chim Acta 778:63–69

    Article  CAS  Google Scholar 

  7. Lan L, Yao Y, ** J, Ying Y (2017) Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens Bioelectron 91:504–514

    Article  CAS  Google Scholar 

  8. Shen L, Chen J, Li N, He P, Li Z (2014) Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles. Anal Chim Acta 839:83–90

    Article  CAS  Google Scholar 

  9. Kümmerer K (2009) Antibiotics in the aquatic environment – a review – Part I. Chemosphere 75:417–434

    Article  Google Scholar 

  10. Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL (2015) Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 49:6772–6782

    Article  CAS  Google Scholar 

  11. Giguère S (2013) Lincosamides, pleuromutilins, and streptogramins antimicrobial therapy in veterinary medicine, 5th edn. Wiley Blackwell, Ames, IA, USA, pp 199–210

    Chapter  Google Scholar 

  12. Sheng W, Chang Q, Shi Y, Duan W, Zhang Y, Wang S (2018) Visual and fluorometric lateral flow immunoassay combined with a dual-functional test mode for rapid determination of tetracycline antibiotics. Microchim Acta 185:404

    Article  Google Scholar 

  13. Kim CH, Lee LP, Min JR, Lim MW, Jeong SH (2014) An indirect competitive assay-based aptasensor for detection of oxytetracycline in milk. Biosens Bioelectron 51:426–430

    Article  CAS  Google Scholar 

  14. Zhang Y, Zhou Z, Zheng J, Li H, Cui J, Liu S, Yan Y, Li C (2017) SiO2-MIP core-shell nanoparticles containing gold nanoclusters for sensitive fluorescence detection of the antibiotic erythromycin. Microchim Acta 184:2241–2248

    Article  CAS  Google Scholar 

  15. Yan Z, Gan N, Li T, Cao Y, Chen Y (2016) A sensitive electrochemical aptasensor for multiplex antibiotics detection based on high-capacity magnetic hollow porous nanotracers coupling exonuclease-assisted cascade target recycling. Biosens Bioelectron 78:51–57

    Article  CAS  Google Scholar 

  16. Xu N, Meng L, Li H, Lu D, Wu Y (2018) Polyethyleneimine capped bimetallic Au/Pt nanoclusters are a viable fluorescent probe for specific recognition of chlortetracycline among other tetracycline antibiotics. Microchim Acta 185:294

    Article  Google Scholar 

  17. Sauvage J, Weiss J (1985) Synthesis of dicopper(I) [3]catenates: multiring interlocked coordinating systems. J Am Chem Soc 107:6110–6111

    Article  Google Scholar 

  18. Weidmann JL, Kern JM, Sauvage JP, Geerts Y, Muscat D, Müllen K (1996) Poly[2]-catenanes containing alternating topological and covalent bonds. Chem Commun 1243−1244

  19. Rai A, Prabhune A, Perry CC (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20:6789–6798

    Article  CAS  Google Scholar 

  20. Johnson RA, Wichern DW (2007) Applied multivariate statistical analysis (ed: Hoag C), 6th edn. Prentice Hall, Upper Saddle River, pp 1–47. Ch. 1

  21. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York, pp 150–166. Ch. 7

  22. Chaudhari K, Xavier PL, Pradeep T (2011) Understanding the evolution of luminescent gold quantum clusters in protein templates. ACS Nano 5:8816–8827

    Article  CAS  Google Scholar 

  23. Mie G (1908) Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann Phys 25:377–445

    Article  CAS  Google Scholar 

  24. Yoshida H, Kuwauchi Y, **schek JR, Sun KJ, Tanaka S, Kohyama M, Shimada S, Haruta M, Takeda S (2012) Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335:317–319

    Article  CAS  Google Scholar 

  25. Qiao L, Qian S, Wang Y, Yan S, Lin H (2018) Carbon dots based lab-on-a-nanoparticle approach for the detection and differentiation of antibiotics. Chem Eur J 24:4703–4709

    Article  CAS  Google Scholar 

  26. Han J, Wang B, Bender M, Pfisterer J, Huang W, Seehafer K, Yazdani M, Rotello VM, Rotello CM, Bunz UHF (2017) Fingerprinting antibiotics with PAE-based fluorescent sensor arrays. Polym Chem 8:2723–2732

    Article  CAS  Google Scholar 

  27. Long D, Peng J, Peng H, **an H, Li S, Wang X, Chen J, Zhang Z, Ni R (2019) A quadruple-channel fluorescent sensor array based on label-free carbon dots for sensitive detection of tetracyclines. Analyst 144:3307–3313

    Article  CAS  Google Scholar 

  28. Bousova K, Senyuva H, Mittendorf K (2013) Quantitative multi-residue method for determination antibiotics in chicken meat using turbulent flow chromatography coupled to liquid chromatography–tandem mass spectrometry. J Chromatogr A 1274:19–27

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China (21607083), Technicians Troop Construction Projects of Henan Province (No. C20150029), Natural Science Foundation of Henan (162300410206), and Scientific and Technological Project of Henan Province (162102310484).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumin Leng.

Ethics declarations

Competing interests

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 3138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, Y., Fu, Y., Lu, Z. et al. Sub-10-nm multicolored gold nanoparticles for colorimetric determination of antibiotics via formation of interlocking rings. Microchim Acta 186, 803 (2019). https://doi.org/10.1007/s00604-019-3949-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3949-9

Keywords

Navigation