Log in

Effect of ball milling time on the magnetoelectric coupling effect of the multiferroic liquid CoFe2O4–Ba0.8Sr0.2TiO3

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this thesis, CoFe2O4 (CFO) and Ba0.8Sr0.2TiO3 (BST) particles were prepared by chemical co-precipitation and sol–gel methods, respectively. On this basis, the particles were surface modified and then the CFO-BST composite liquid was prepared by adding CFO: BST = 1:1 to the insulating base solution. XRD results showed that pure phase CFO and BST particles were successfully prepared. The maximum dielectric constant and residual polarization intensity were obtained at low frequency (200 Hz) at 30 h. However, the relative rates of change of dielectric constant and ferroelectricity under the action of magnetic field were increasing and then decreasing. At 2 h, the maximum rate of change of magnetic dielectric response (3.15%) and the maximum rate of change of magnetoelectric response (256.4%) were obtained, meanwhile, a coupling coefficient of 8.34 V/(cm Oe) was obtained. This value is several orders of magnitude greater than that of conventional ceramics and promises new applications.

Graphic abstract

The structure, dielectric and magnetoelectric effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The datasets and material generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Schmid, Ferroelectrics 162(1), 317–338 (1994). https://doi.org/10.1080/00150199408245120

    Article  Google Scholar 

  2. A. Mukherjee, S. Basu, L.A.W. Green, N.T.K. Thanh, M. Pal, J. Mater. Sci. 50(4), 1891–1900 (2015). https://doi.org/10.1007/s10853-014-8752-8

    Article  CAS  Google Scholar 

  3. S.W. Cheong, M. Mostovoy, Nat. Mater. 6(1), 13–20 (2007). https://doi.org/10.1038/nmat1804

    Article  CAS  Google Scholar 

  4. J. Ma, Z. Shi, C.W. Nan, Adv. Mater. 19(18), 2571–2573 (2007). https://doi.org/10.1002/adma.200700330

    Article  CAS  Google Scholar 

  5. K. Singh, D. Kaur, J. Appl. Phys 121(8), 084104 (2017). https://doi.org/10.1063/1.4976330

    Article  CAS  Google Scholar 

  6. Z.Y. Zhou, B.M. Howe, M. Liu, T.X. Nan, X. Chen, K. Mahalingam, N.X. Sun, G.J. Brown, Sci. Rep. 5(1), 1–7 (2015). https://doi.org/10.1038/srep07740

    Article  CAS  Google Scholar 

  7. K.L. Wang, J.G. Alzate, P.K. Amiri, J. Phys. D: Appl. Phys. 46(7), 074003 (2013). https://doi.org/10.1088/0022-3727/46/7/074003

    Article  CAS  Google Scholar 

  8. J.F. Scott, Sci 315(5814), 954–959 (2007). https://doi.org/10.1126/science.112956

    Article  CAS  Google Scholar 

  9. C.B. Eom, S. Trolier-McKinstry, MRS Bull. 37(11), 1007–1017 (2012). https://doi.org/10.1557/mrs.2012.273

    Article  CAS  Google Scholar 

  10. Y. Liu, J. Seidel, J. Li, Natl. Sci. Rev. 6(4), 626–628 (2019). https://doi.org/10.1093/nsr/nwz056

    Article  CAS  Google Scholar 

  11. M. Naveed-Ul-Haqa, V.V. Shvartsman, H. Trivedi, S. Salamonb, S. Webers, H. Wendeb, U. Hagemann, J. Schröder, Acta Mater. 144, 305–313 (2018). https://doi.org/10.1016/j.actamat.2017.10.048

    Article  CAS  Google Scholar 

  12. H. Zhang, S.W. Or, H.L.W. Chan, J. Alloy. Compd. 509(21), 6311–6316 (2011). https://doi.org/10.1016/j.jallcom.2011.03.071

    Article  CAS  Google Scholar 

  13. L. Zhou, Q.Y. Fu, D.X. Zhou, Z.P. Zheng, Y.X. Hu, W. Luo, Y.H. Tian, C.H. Wang, F. Xue, X.H. Tang, Appl. Phys. Lett 111(3), 1–5 (2017). https://doi.org/10.1063/1.4993161

    Article  CAS  Google Scholar 

  14. A.P. Chen, Y.M. Dai, A. Eshghinejad, Z. Liu, Z.C. Wang, J. Bowlan, E. Knall, L. Civale, J.L. MacManus-Driscoll, A.J. Taylor, R.P. Prasankumar, T. Lookman, J.Y. Li, D. Yarotski, Q.X. Jia, Adv. Sci. 6(19), 1901000 (2019). https://doi.org/10.1002/advs.201901000

    Article  CAS  Google Scholar 

  15. X. Xuan, Micromachines 10(11), 744 (2019). https://doi.org/10.3390/mi10110744

    Article  Google Scholar 

  16. A.N. Afifah, S. Syahrullail, N.A.C. Sidik, Renew. Sustain. Energy Rev. 55, 1030–1040 (2016). https://doi.org/10.1016/j.rser.2015.11.018

    Article  CAS  Google Scholar 

  17. W. Wen, X. Huang, P. Sheng, Soft Matter 4(2), 200–210 (2008). https://doi.org/10.1039/B710948M

    Article  CAS  Google Scholar 

  18. R.L. Gao, Z.Y. Xu, L. Bai, Q.M. Zhang, Z.H. Wang, W. Cai, G. Chen, X.L. Deng, X.L. Cao, X.D. Luo, C.L. Fu, Adv. Electron. Mater. 4(6), 1800030 (2018). https://doi.org/10.1002/aelm.201800030

    Article  CAS  Google Scholar 

  19. F.L. Liu, Y.T. Lou, F. **a et al., Chem. Eng. J. 454, 140318 (2023). https://doi.org/10.1016/j.cej.2022.140318

    Article  CAS  Google Scholar 

  20. F.L. Liu, S.S. Wang, B.W. Hu, Chem. Eng. J. 456, 141100 (2023). https://doi.org/10.1016/j.cej.2022.141100

    Article  CAS  Google Scholar 

  21. T. Zhang, J. Chen, H. **ong et al., Chemosphere 283, 131241 (2021). https://doi.org/10.1016/j.chemosphere.2021.131241

    Article  CAS  Google Scholar 

  22. D.H. Han, J.P. Wang, H.L. Luo, J. Magn. Magn. Mater. 136(1–2), 176–182 (1994). https://doi.org/10.1016/0304-8853(94)90462-6

    Article  CAS  Google Scholar 

  23. Y. Zhang, S.Z. Xu, W.H. Zhao, Z. Gong, X.Q. Zhao, Electromagn. Anal. Appl. 02, 31–38 (2013). https://doi.org/10.12677/eaa.2013.23005

    Article  Google Scholar 

  24. V. Sathiya, K. Suganya, K. SenthilKannan et al., J Mater Sci: Mater. Electron. 33(24), 19514–19533 (2022). https://doi.org/10.1007/s10854-022-08787-5

    Article  CAS  Google Scholar 

  25. K. Suganya, J. Maalmarugan, R. Manikandan et al., J. Mater. Sci: Mater. Electron. 33(24), 19320–19330 (2022). https://doi.org/10.1007/s10854-022-08770-0

    Article  CAS  Google Scholar 

  26. X.V. Winston, D. Sankar, K. SenthilKannan et al., J Mater Sci: Mater Electron. 33(26), 20616–20630 (2022). https://doi.org/10.1007/s10854-022-08873-8

    Article  CAS  Google Scholar 

  27. G. Liu, S. Zhang, W. Jiang, W. Cao, Mater. Sci. Eng. R. Rep. 89, 1–48 (2015). https://doi.org/10.1016/j.mser.2015.01.002

    Article  CAS  Google Scholar 

  28. R. Sathishkumar, K. SenthilKannan, C.J. Magesh et al., Optik 226, 165947 (2021). https://doi.org/10.1016/j.ijleo.2020.165947

    Article  CAS  Google Scholar 

  29. H. Wu, R.C. Xu, X.F. Qin, R.L. Gao, S.L. Zhang, C. Zhou, S.L. **ng, W. Cai, J. Mater. Sci.: Mater. Electron. 31(2), 885–895 (2020). https://doi.org/10.1007/s10854-019-02595-0

    Article  CAS  Google Scholar 

  30. H. Wu, H. Ao, W.C. Li, Z.X. Zeng, R.L. Gao, C.L. Fu, G. Chen, X.L. Deng, Z.H. Wang, X. Lei, W. Cai, Mater. Today Chem. 21, 100511 (2021). https://doi.org/10.1016/j.mtchem.2021.100511

    Article  CAS  Google Scholar 

  31. J. Seidel, L.W. Martin, Q. He, Q. Zhan, Y.H. Chu, A. Rother, M.E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S.V. Kalinin, S. Gemming, F. Wang, G. Catalan, J.F. Scott, N.A. Spaldin, J. Orenstein, R. Ramesh, Nat. Mater. 8(3), 229–234 (2009). https://doi.org/10.1038/nmat2373

    Article  CAS  Google Scholar 

  32. H. Wu, R.C. Xu, C. Zhou, S.L. **ng, Z.X. Zeng, H. Ao, W.C. Li, X.F. Qin, R.L. Gao, J. Phys. Chem. Solids 160, 110314 (2022). https://doi.org/10.1016/j.jpcs.2021.110314

    Article  CAS  Google Scholar 

  33. F.J. Galindo-Rosales, Complex fluids in energy dissipating systems. Appl. Sci. 6(8), 206 (2016). https://doi.org/10.3390/app6080206

    Article  CAS  Google Scholar 

  34. S. Shankar, M. Kumar, V. Tuli, O.P. Thakur, M. Jayasimhadri, J. Mater. Sci.: Mater. Electron. 29, 18352–18357 (2018). https://doi.org/10.1007/s10854-018-9949-4

    Article  CAS  Google Scholar 

  35. R.A.U. Rahman, D.E.J. Ruth, S. Chakravarty, P. Schmid-Beurmann, D. Duraisamy, G.N. Venkatesan, P. Zhou, G. Srinivasan, R. Murugan, J. Appl. Phys 126(4), 044103 (2019). https://doi.org/10.1063/1.5081895

    Article  CAS  Google Scholar 

  36. H. Wu, R.C. Xu, X.F. Qin, R.L. Gao, Z.H. Wang, C.L. Fu, W. Cai, G. Chen, X.L. Deng, Appl. Phys. A 126(2), 1–11 (2020). https://doi.org/10.1007/s00339-019-3276-3

    Article  CAS  Google Scholar 

  37. U. Dassanayake, S. Fraden, A.V. Blaaderen, J. Chem. Phys. 112(8), 3851–3858 (2000). https://doi.org/10.1063/1.480933

    Article  CAS  Google Scholar 

  38. Y.D. Liu, H.J. Choi, Soft Matter 8(48), 11961–11978 (2012). https://doi.org/10.1039/C2SM26179K

    Article  CAS  Google Scholar 

  39. S.M. Liang, Y. Miao, X.Y. Zhu, J. Wei, Q.F. Zhan, X.H. Huang, L.D. Zhang, ACS Appl. Mater. Interfaces 13(9), 11424–11432 (2021). https://doi.org/10.1021/acsami.0c21021

    Article  CAS  Google Scholar 

  40. K.V. Siva, P. Kaviraj, A. Arockiarajan, Mater. Lett. 268, 127623 (2020). https://doi.org/10.1016/j.matlet.2020.127623

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work has been supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-M201901501), the Scientific and Technological Research Key Program of Chongqing Municipal Education Commission (KJZD-K20220150), the Chongqing Research Program of Basic Research and Frontier Technology (cstc2019jcyj-msxmX0071, cstc2021jcyj-msxmX0008, cstc2021jcyj-msxmX0039, cstc2021jcyj-msxmX0599), the Program for Creative Research Groups in University of Chongqing (CXQT19031), the Natural Science Foundation of Chongqing (cstc2020jcyj-zdxmX0008, cstc2020jcyj-msxmX0030), the Leading Talents of Scientific and Technological Innovation in Chongqing (CSTCCXLJRC201919), the special project of Chongqing technology innovation and application development (cstc2020jscx-msxmX0218), the Provincial and Ministerial Co-constructive of Collaborative Innovation Center for MSW Comprehensive Utilization, the Scientific and Technological Research Young Program of Chongqing Municipal Education Commission (KJQN202001528), the Research Foundation of Chongqing University of Science and Technology (No. Ckrc2019020), The special project for technological innovation and application development of Chongqing Science and technology enterprises (cstc2021kqjscx-phxmX0008), and the Postgraduate technology innovation project of Chongqing University of Science & Technology (Grant Nos. YKJCX2220205, YKJCX2220222, YKJCX2220224, YKJCX2220230)

Author information

Authors and Affiliations

Authors

Contributions

SZ: Conceptualization, Methodology, Investigation, Writing—original draft. YZ: Validation, Formal analysis, Visualization. GS: Validation, Formal analysis, Visualization, Writing – review and editing. HW: Validation, Formal analysis,—review and editing. AH: Resources, Writing -review and editing. WL: Resources, Writing—review and editing. RG, XD: Formal analysis, Writing—review and editing. WC, ZW: Writing—review and editing. CF: Resources, Writing—review and editing, Supervision, Data curation. XL: Resources, Writing—review and editing, Supervision, Data curation. GC: Writing—review and editing.

Corresponding authors

Correspondence to Rongli Gao or **aoling Deng.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

No human and/or animal studies are involved. Manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 891 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, S., Zhang, Y., Sun, G. et al. Effect of ball milling time on the magnetoelectric coupling effect of the multiferroic liquid CoFe2O4–Ba0.8Sr0.2TiO3. Journal of Materials Research 38, 2576–2587 (2023). https://doi.org/10.1557/s43578-023-00987-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00987-x

Keywords

Navigation