Log in

Gamma ray-irradiated induced effects on SCN ligand-based MMTC single crystals for optoelectronic applications synthesized by SR method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nonlinear optical organometallic single crystal of manganese mercury thiocyanate (MMTC) has been grown by SR method in aqueous solution. The grown MMTC crystals are irradiated by gamma ray 10 kGy and 20 kGy. The lattice parameters and the crystal system are confirmed by powder X-ray diffraction and single crystal X-ray diffraction studies. The structural purity of grown MMTC single crystal has been examined by high-resolution X-ray diffraction (HR-mXRD) at room temperature. Fourier transform infrared—FTIR spectral analyses for unirradiated and irradiated crystals identify the functional groups present in synthesized compound. Scanning electron microscopy—SEM analysis reveals that the surface of the crystal has minor defects and few dislocations. The UV–Visible spectra reveal an increase in the optical absorption with increase in gamma dose in MMTC crystal. The optical band gap is estimated and found to decrease with increase in gamma dose. Fluorescence studies reveal that the compound shows emission spectra with green and blue fluorescence for MMTC specimens. Detailed dielectric measurements have been carried out and the dielectric constant is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

This research work is not submitted or not in a position to publish elsewhere and is a novel unpublished work. Data are fully presented in manuscript and no repository or additional/supplementary to proceed; all are mentioned here itself.

References

  1. M. Selvapandiyan, S. Sudhakar, P. Sundaramoorthi, J. Alloys Compd. 523, 25 (2012)

    Article  CAS  Google Scholar 

  2. Y. Wu, W. Bensch, J. Alloys Compd. 511, 35 (2012)

    Article  CAS  Google Scholar 

  3. N. Nithya, R. Mahalakshmi, S. Sagadevan, Int. J. Chem. Tech Res. 7, 2550 (2014)

    Google Scholar 

  4. X.Q. Wang, D. Xu, M.K. Lu, D.R. Yuan, S.X. Xu, S.Y. Guo, G. Zhang, J.R. Liu, J. Cryst. Growth 224, 284 (2001)

    Article  CAS  Google Scholar 

  5. D.G. Vargas-Pineda, T. Guardado, F. Cervantes-Lee, A.J. Meta-Magaña, K.H. Pannell, Inorg. Chem. 49, 960 (2010)

    Article  CAS  Google Scholar 

  6. R.A. Varga, K. Jurkschat, C. Silvestru, Eur. J. Inorg. Chem. 5, 708 (2008)

    Article  Google Scholar 

  7. Z. Rappoport, The chemistry of organic germanium, tin and lead compounds, vol. 2 (Wiley, West Sussex, UK, 2002)

    Book  Google Scholar 

  8. R. Cea-Olivares, V. García-Montalvo, M.M. Moya-Cabrera, Coord. Chem. Rev. 249, 859 (2005)

    Article  CAS  Google Scholar 

  9. M.P. Coles, M.S. Khalaf, P.B. Hitchcock, Inorg. Chim. Acta 422, 228 (2014)

    Article  CAS  Google Scholar 

  10. A.G. Davies, M. Gielen, K.H. Pannell, E.R.T. Tiekink, Tin chemistry: fundamentals frontiers and applications (Wiley, West Sussex, UK, 2008)

    Book  Google Scholar 

  11. C. Pellerito, L. Nagy, L. Pellerito, A. Szorcsik, J. Organomet. Chem. 691, 1733 (2006)

    Article  CAS  Google Scholar 

  12. J.E. Le Grognec, J.M. Chrétien, F. Zammattio, J.P. Quintard, Chem. Rev. 115, 10207 (2015)

    Article  Google Scholar 

  13. X.Q. Wang, X.F. Cheng, S.J. Zhang, D. Xu, G.H. Zhang, Z.H. Sun, F.P. Yu, X.J. Liu, W.L. Liu, C.L. Chen, Phys. B 405, 1071 (2010)

    Article  CAS  Google Scholar 

  14. X.Q. Wang, D. Xu, M.K. Lu, D.R. Yuan, J. Huang, G.W. Lu, G.H. Zhang, S.Y. Guo, H.X. Ning, X.L. Duan, Y. Chen, Y.Q. Zhou, Opt. Mater. 23, 335 (2003)

    Article  Google Scholar 

  15. X.Q. Wang, D. Xu, M.K. Lu, D.R. Yuan, S.X. Xu, Mater. Res. Bull. 36, 879 (2001)

    Article  CAS  Google Scholar 

  16. X. Liu, X. Wang, Z. Sun, X. Lin, G. Zhang, X. Dong, J. Cryst. Growth 317, 92 (2011)

    Article  CAS  Google Scholar 

  17. X. Wang, D. Xu, M.K. Lu, D.R. Yuan, G.H. Zhang, F.Q. Meng, S.Y. Guo, M. Zhou, J.R. Liu, X.R. Li, Cryst. Res. Technol. 36, 73 (2001)

    Article  Google Scholar 

  18. X. Wang, Xu. Dong, Lu. Mengkai, D. Yuan, X. Chang, S. Li, Ji. Huang, S. Wang, H. Liu, J. Crystal Growth 245, 126 (2002)

    Article  CAS  Google Scholar 

  19. G.H. Gilmer, R. Ghez, N. Cabrera, J. Cryst. Growth 8, 79 (1971)

    Article  CAS  Google Scholar 

  20. T. Rajesh Kumar, R. Jersld Vijay, R. Jeyasekaran, S. Selvakumar, M. Antony Arockiaraj, P. Sagayaraj, Opt. Mater. 33, 1654 (2011)

    Article  CAS  Google Scholar 

  21. M.A. Ahlam, M.N. Ravishankar, N. Vijayan, G. Govindaraj, V. Upadhyaya, A.P.G. Prakash, J. Opt. 41, 158 (2012)

    Article  Google Scholar 

  22. R.K. Raju, S.M. Dharmaprakash, H.S. Jayanna, Opt. Int. J. Light Electron Opt. 127, 11649 (2016)

    Article  CAS  Google Scholar 

  23. H.S. Virk, P.S. Chandi, A.K. Srivastava, Nucl. Instrum. Methods Phys. Res. Sect. B 183, 329 (2001)

    Article  CAS  Google Scholar 

  24. Y.X. Yan, Q. Fang, W.T. Yu, D.R. Yuan, Y.P. Tian, M.H. Jiang, D. Williams, Z.G. Cai, Acta Chim. Sin. 57, 1257 (1999)

    CAS  Google Scholar 

  25. G. Bhagavannarayana, R.V. Ananthamurthy, G.C. Budakoti, B. Kumar, K.S. Bartwal, J. Appl. Cryst. 38, 768 (2005)

    Article  CAS  Google Scholar 

  26. T. Rajesh Kumar, R. Jeyasakaran, S.M. Ravikumar, M. Vimalan, P. Sagayaraj, Appl Surf Sci 257, 1687 (2010)

    Article  Google Scholar 

  27. R.K. Raju, S.M. Dharmaprakash, H.S. Jayanna, Optik 127, 11649 (2016)

    Article  CAS  Google Scholar 

  28. R. Sakunthaladevi, L. Jothi, J. Mol. Struct. 1233, 130054 (2021)

    Article  CAS  Google Scholar 

  29. S. Boomadevi, R. Dhanasekaran, J. Cryst. Growth 261, 70 (2004)

    Article  CAS  Google Scholar 

  30. S. Hinano, P.C. Kim, H. Orihara, H. Umeda, Y. Ishibashi, J. Mater. Sci. 25, 2800 (1990)

    Article  Google Scholar 

  31. P.W. Zukowski, S.B. Kantorow, D. Maczka, V.F. Stelmakh, Phys. Status. Solidi. A 112, 695 (1989)

    Article  CAS  Google Scholar 

  32. A. Vasudevan, S. Carin, M.R. Melloch, E.S. Hannon, Appl. Phys. Lett. 73, 671 (1998)

    Article  CAS  Google Scholar 

  33. J. Benet Charles, F.D. Ganam, Cryst. Res. Technol. 29, 707 (1994)

    Article  Google Scholar 

  34. C.P. Smyth, Dielectric Behaviour and Structure, vol. 132 (McGraw-Hill, New York, 1995)

    Google Scholar 

  35. M. Rajkumar, J. Maalmarugan, G. Flora, S. Surendarnath, S. Christy, P. Periyathambi, R. Shashank Kumar, P. Patel, F. Dayana Lobo, A. Kumar Singh, M. Vimalan, K. Senthil Kannan, J. Mater Sci: Mater Electron 32, 22822 (2021)

    CAS  Google Scholar 

  36. M. Vimalan, A. Cyrac Peter, T. Rajesh Kumar, C. Jayasekaran, J. Packiam Julius, P. Sagayaraj, Arch. Phys. Res. 1(2), 94 (2010)

    CAS  Google Scholar 

  37. F. Yogam, I. VethaPotheher, M. Vimalan, R. Jeyasekaran, T. Rajesh Kumar, P. Sagayaraj, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 95, 369 (2012)

    Article  CAS  Google Scholar 

  38. Ginson P. Joseph, K. Rajarajan, M. Vimalan, S. Selvakumar, S.M. Ravi Kumar, J. Madhavan, P. Sagayaraj, Materials Research Bulletin, 42, 2040 (2007)

  39. M. Kolan**athan, K. SenthilKannan, D. Sankar, P. Periyathambi, M. Iyanar, S. Gunasekaran, P. Baskaran, M. Meena, M. Vimalan, J. Mater. Sci. Mater. Electron. 31, 16907 (2020)

    Article  CAS  Google Scholar 

  40. K. Kumar, K. Senthilkannan, R. Hariharasuthan, M. Jothibas, M. Vimalan, P. Baskaran, M. Iyanar, M. Kolan**athan, J. Mater. Sci. Mater. Electron. 31, 20816 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author Dr. D. Sankar, thank the Management of The New College (Autonomous), Chennai—600014 for rendering permission to complete this work successfully. The author Dr. T. Rajesh Kumar, thank the Management, G.T.N. Arts College for the constant support and encouragement given for this work and also thank (Dr. P. Rajesh) Assistant Professor of Physics, S. S. N Engineering College, Kalavakam for the instrumental support. The author Dr. M. Vimalan sincerely thanks the Managing Director of Selka Energy Key To Green World (Er. D. Kalai Selvi) for dielectric measurement support.

Author information

Authors and Affiliations

Authors

Contributions

XVW—SR method of growth, SXRD, PXRD studies. DS—FTIR, HRXRD, write up and correspondence. KSK—FL, SEM, write up. MV—Dielectric write up. TRK—gamma irradiation study.

Corresponding authors

Correspondence to D. Sankar or T. Rajesh Kumar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasanth Winston, X., Sankar, D., SenthilKannan, K. et al. Gamma ray-irradiated induced effects on SCN ligand-based MMTC single crystals for optoelectronic applications synthesized by SR method. J Mater Sci: Mater Electron 33, 20616–20630 (2022). https://doi.org/10.1007/s10854-022-08873-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08873-8

Navigation