Background

Peripheral neuropathic pain (PNP), manifesting as spontaneous pain, arises as a result of many forms of nerve damage, including traumatic nerve injury, diabetic neuropathy, HIV neuropathy, and drug-induced neuropathy [1, 2]. Among other effects, nerve injury-induced PNP is associated with inflammatory reaction and activation of glial cells in the corresponding spinal cord segments [1, 3, 4].

Experimental PNP models are predominantly based on injury to the sciatic nerve, wherein the maximum number of neuronal perikarya (98–99 %) is localized at the L4 and L5 segments [5]. Sterile chronic constriction injury (sCCI) of the sciatic nerve is a model for study of cellular and molecular changes inducing PNP after traumatic nerve injury with dominant molecular signaling from Wallerian degeneration [6]. It is well documented that hypersensitivity and ongoing pain due to peripheral nerve injury are associated with cellular and molecular changes in the dorsal horn (DH) of the spinal cord related to activation of microglial cells and astrocytes and alteration of pro- and anti-inflammatory cytokines produced by neurons, activated glia, and invaded immune cells [712]. There is a growing body of evidence that unilateral nerve injury results in bilateral neuroinflammatory reaction in the dorsal root ganglia and spinal cord DH [10, 1315], thus illustrating signaling from the site of Wallerian degeneration to other compartments of the nervous system [16].

CD200 is a membrane glycoprotein of the immunoglobulin superfamily with immune suppression effect via its receptor CD200R. CD200 has an extracellular portion with two immunoglobulin domains, typical of proteins involved in cell-to-cell interaction. The CD200 receptor CD200R1 has a similar structure but with an additional intracellular domain that is susceptible to phosphorylation and involved in signal transduction [17, 18]. CD200 is highly expressed on neurons while CD200R is confined mainly to myeloid cells like macrophages and microglia [1923]. In addition, CD200 is expressed in oligodendrocytes [23] and astrocytes [23, 24]. The interaction of CD200 with its receptor CD200R plays a significant role in maintaining microglia in a quiescent or resting state and attenuates various types of neuroinflammatory diseases [19, 25, 26]. It has been demonstrated that mice with levels of CD200 increased by spontaneous mutation in the Wld gene have less activated monocytes and increasing expression of IL-10 in the central nervous system following induction of experimental autoimmune encephalomyelitis [27]. Conversely, CD200−/− mice have been shown to display myeloid cell dysregulation, enhanced susceptibility to experimental autoimmune encephalomyelitis [28], and microglial activation [29]. Furthermore, CD200R expression can be modulated by IL-4 and IL-13 [30, 31].

Experimental studies have demonstrated that soluble CD200 fusion protein (CD200Fc), containing the ectodomain of CD200 bound to a murine IgG2a module, attenuates inflammatory diseases and reduces microglial activation [32

Table 1 Rat primer sequences used in quantitative polymerase chain reactions

Statistical analyses

Behavioral data were evaluated using Kruskal-Wallis one-way analysis with Bonferroni post hoc test and p values less than 0.05 were considered to be significant. To verify differences of immunostaining area, western blot and RT-PCR, a one-way ANOVA with subsequent post hoc t tests employing a correction of alpha according to Bonferroni for repeated measures was run with p < 0.05 as the level of significant differences between tested samples. Statistical differences between data of relative immunostaining area, western blot, and RT-PCR were tested by Mann-Whitney U test (p < 0.05). All statistical analyses were made using STATISTICA-12 software (StatSoft, Tulsa, OK, USA).