Log in

Cytokine Modulation is Necessary for Efficacious Treatment of Experimental Neuropathic Pain

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Neuropathic pain originates from a damage or disease affecting the somatosensory system. Its treatment is unsatisfactory as it appears refractory to most analgesics. Animal models of neuropathic pain are now available that help to clarify the underlying mechanisms. Recently it has been recognized that inflammatory and immune mechanisms in the peripheral and in the central nervous system play a role in the onset and the maintenance of pain. In response to nervous tissue damage, activation of resident or recruited immune cells leads to the production of inflammatory mediators, as cytokines. In models of neuropathic pain, such as nerve injury and diabetes induced neuropathy, the time course of the expression of the proinflammatory cytokines TNF-α,IL-1β and IL-6 and of the antiinflammatory cytokine IL-10 has been well characterized both in the peripheral (sciatic nerve, dorsal root ganglia) and the central (spinal cord) nervous system. These cytokines appear activated/modulated in the nervous tissue in parallel with the occurrence of painful behaviour, i.e. allodynia and hyperalgesia. Novel therapeutic approaches efficacious to reduce painful symptoms, for example treatments with the non specific purinergic antagonist PPADS, the phytoestrogen genistein and a cell stem therapy with murine adult neural stem cells also re-established a balance between pro and antinflammatory mediators in the peripheral and central nervous system. These data suggest a pivotal role of immune system and inflammation in neuropathic pain. The modulation of inflammatory molecules appears to be a common trait accomplished throughout different mechanisms by different drugs that might converge in neuropathic pain modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An J, Tzagarakis-Foster C, Scharschmidt TC, Lomri N, Leitman DC (2001) Estrogen receptor beta-selective transcriptional activity and recruitment of coregulators by phytoestrogens. J Biol Chem 276:17808–17814

    Article  PubMed  CAS  Google Scholar 

  • Anderson CM, Bergher JP, Swanson RA (2004) ATP-induced ATP release from astrocytes. J Neurochem 88:246–256

    Article  PubMed  CAS  Google Scholar 

  • Andò RD, Mehesz B, Gyires K, Illes P, Sperlagh B (2010) A comparative analysis of the activity of ligands acting at P2X and P2Y receptor subtypes in models of neuropathic, acute and inflammatory pain. Br J Pharmacol 159:1106–1117

    Article  PubMed  Google Scholar 

  • Austin PJ, Moalem Taylor G (2010) The neuroimmune balance in neuropathic pain: involvement of inflammatory immune cell, immune-like glia cells and cytokines. J Neuroimmunol 229:26–50

    Article  PubMed  CAS  Google Scholar 

  • Badr G, Badr BM, Mahmoud MH, Mohany M, Rabah DM, Garraud O (2012) Treatment of diabetic mice with undenatured whey protein accelerates the wound healing process by enhancing the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wounded tissue. BMC Immunol 18:13–32

    Google Scholar 

  • Bennett GJ, **e YK (1988) A peripheral mononeuropathy in rat that produced disorders of pain sensation like those seen in man. Pain 56:87–107

    Article  Google Scholar 

  • Borsani E, Albertini R, Colleoni M, Sacerdote P, Trovato AE, Lonati C, Labanca M, Panerai AE, Rezzani R, Rodella LF (2008) PPADS, a purinergic antagonist reduces Fos expression at spinal cord level in a mouse model of mononeuropathy. Brain Res 1199:74–78

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G (2006) Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 110:433–454

    Article  PubMed  CAS  Google Scholar 

  • Calcutt NA (2002) Potential mechanisms of neuropathic pain in diabetes. Int Rev Neurobiol 50:205–228

    Article  PubMed  CAS  Google Scholar 

  • Calvo M, Dawes JM, Bennet DLH (2012) The role of the immune system in the generation of neuropathic pain. Lancet Neurol 11:629–642

    Article  PubMed  CAS  Google Scholar 

  • Campana WM (2007) Schwann cells: activated peripheral glia and their role in neuropathic pain. Brain Behav Immun 21:522–527

    Article  PubMed  CAS  Google Scholar 

  • Caplan AI (2010) What’s in a name? Tissue Eng Part A 16:2415–2417

    Article  PubMed  Google Scholar 

  • Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9:11–15

    Article  PubMed  CAS  Google Scholar 

  • Colleoni M, Sacerdote P (2010) Murine models of human neuropathic pain. Biochim Biophys Acta 1802:924–933

    Article  PubMed  CAS  Google Scholar 

  • Conti G, Scarpini E, Baron P, Livraghi S, Tiriticchio M, Bianchi R, Vedeler C, Scarlato G (2002) Macrophage infiltration and death in the nerve during the early phases of experimental diabetic neuropathy: a process concomitant with endoneurial induction of IL-1β and p75NTR. J Neurol Sci 195:35–40

    Article  PubMed  CAS  Google Scholar 

  • Costigan M, Scholz J, Woolf CJ (2009) Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci 32:1–32

    Article  PubMed  CAS  Google Scholar 

  • De Leo JA, Yeziersky RP (2001) The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 90:1–6

    Article  Google Scholar 

  • Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158

    Article  PubMed  CAS  Google Scholar 

  • Doi D, Ota Y, Konishi H, Yoneyama K, Araki T (2003) Evaluation of the neurotoxicity of paclitaxel and carboplatin by current perception threshold in ovarian cancer patients. J Nippon Med Sch 70:129–134

    Article  PubMed  CAS  Google Scholar 

  • Donnelly-Roberts D, McGaraughty S, Shieh CC, Honore P, Jarvis MF (2008) Painful purinergic receptors. J Pharmacol Exp Ther 324:409–415

    Article  PubMed  CAS  Google Scholar 

  • Duffy C, Perez K, Partridge A (2007) Implications of phytoestrogen intake for breast cancer. CA Cancer J Clin 57:260–277

    Article  PubMed  Google Scholar 

  • Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436

    Article  PubMed  CAS  Google Scholar 

  • Fleetwood-Walker SM, Quinn JP, Wallace C, Blackburn-Munro G, Kelly BG, Fiskerstrand CE, Nash AA, Dalziel RG (1999) Behavioural changes in the rat following infection with varicella-zoster virus. J Gen Virol 80:2433–2436

    PubMed  CAS  Google Scholar 

  • Franchi S, Valsecchi AE, Borsani E, Procacci P, Ferrari D, Zalfa P, Sartori P, Rodella LF, Vescovi A, Maione S, Rossi F, Sacerdote P, Colleoni M, Panerai AE (2012) Intravenous neural stem cells abolish nociceptive hypersensitivity and trigger nerve regeneration in experimental neuropathy. Pain 153:850–861

    Article  PubMed  Google Scholar 

  • Givogri MI, Bottai D, Zhu HL, Fasano S, Lamorte G, Brambilla R, Vescovi A, Wrabetz L, Bongarzone E (2008) Multipotential neural precursors transplanted into the metachromatic leukodystrophy brain fail to generate oligodendrocytes but contribute to limit brain dysfunction. Dev Neurosci 30:340–57

    Google Scholar 

  • Gomes MB, Piccirillo LJ, Nogueira VG, Matos HJ (2003) Acute-phase proteinsamong patients with type 1 diabetes. Diab Metab 29:405–411

    Google Scholar 

  • Gonzalez-Clemente JM, Mauricio D, Richart C, Broch M, Caixas A, Megia A, Gimenez-Palop O, Simon I, Martinez-Requelme A, Gimenez-Perez G, Vendrell J (2005) Diabetic neuropathy is associated with activation of the TNF-alpha system in subjects with type 1 diabetes mellitus. Clin Endocrinol 63:525–529

    Article  CAS  Google Scholar 

  • Grace PM, Rolan PE, Hutchinson MR (2011) Peripheral immune contributions to the maintenance of central glia activation underlying neuropathic pain. Brain Behav Immun 25:1322–1332

    Article  PubMed  CAS  Google Scholar 

  • Hasnie FS, Breuer J, Parker S, Wallace V, Blackbeard J, Lever I, Kinchinton PR, Dickenson AH, Pheby T, Rice ASC (2007) Further characterization of a rat model of varicella zoster virus-associated pain: relationship between mechanical hypersensitivityand anxiety-related bahavior, and the influence of analgesic drugs. Neuroscience 144:1495–1508

    Article  PubMed  CAS  Google Scholar 

  • Inoue K (2006) The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol Ther 109:210–226

    Article  PubMed  CAS  Google Scholar 

  • Keswani SC, Jack C, Zhou C, Hoke A (2006) Establishment of a rodent model of HIV-associated sensory neuropathy. J Neurosci 26:10299–10304

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Chung JN (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in rat. Pain 50:355–363

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages:a novel type of alternatively activated macrophages. Exp Hematol 37:1445–1453

    Article  PubMed  CAS  Google Scholar 

  • Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138:863–870

    Article  PubMed  CAS  Google Scholar 

  • Latremoliere A, Woolf CJ (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10:895–926

    Article  PubMed  Google Scholar 

  • Lee BH, Seong J, Kim UJ, Won R, Kim J (2005) Behavioral characteristics of a mouse model of cancer pain. Yonsei Med J 46:252–259

    Google Scholar 

  • Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51:216–226

    Article  PubMed  CAS  Google Scholar 

  • Li YA, Ji A, Weihe E, Schafer MK (2004) Cell specific expression and lipopolysaccaride regulation of tumor necrosis factor alpha (TNF-alpha) and TNF receptors in rat dorsal root ganglia. J Neurosci 24:9623–9631

    Article  PubMed  CAS  Google Scholar 

  • Lynch JL, Gallus NJ, Ericson ME, Beitz AJ (2008) Analysis of nociception, sex and peripheral nerve innervation in the TMEV animal model of multiple sclerosis. Pain 136:293–304

    Article  PubMed  Google Scholar 

  • Marchand F, Perretti M, McMahon SB (2005) Role of immune system in chronic pain. Nat Rev Neurosci 6:521–532

    Article  PubMed  CAS  Google Scholar 

  • Martucci C, Trovato AE, Costa B, Borsani E, Franchi S, Magnaghi V, Panerai AE, Rodella LF, Valsecchi AE, Sacerdote P, Colleoni M (2008) The purinergic antagonist PPADS reduces pain related behaviours and interleukin-1 beta, interleukin-6, iNOS and nNOS overproduction in central and peripheral nervous system after peripheral neuropathy in mice. Pain 137:81–95

    Article  PubMed  CAS  Google Scholar 

  • Meyerovitch J, Rothenberg P, Shechter Y, Bonner-Weir S, Kahn CR (1991) Vanate normalizes hyperglycemia in two mouse models of non-insulin-dependent diabetes mellitus. J Clin Invest 87:1286–1294

    Article  PubMed  CAS  Google Scholar 

  • Mogil JS (2009) Animals models of pain. Nat Rev Neurosci 10:283–293

    Article  PubMed  CAS  Google Scholar 

  • Mosseri R, Waner T, Shefi M, Shafir E, Meyerovitch J (2000) Gluconeogenesis in non-obese diabetic (NOD) mice: in vivo effect of vanadate treatment on hepatic glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. Metabolism 49:321–325

    Article  PubMed  CAS  Google Scholar 

  • Myers RR, Campana WM, Shubayev VI (2006) The role of neuroinflammation in neuropathic pain: mechanisms and therapeutic targets. Drug Discov Today 11:8–20

    Article  PubMed  CAS  Google Scholar 

  • Sacerdote P, Franchi S, Trovato AE, Valsecchi AE, Panerai AE, Colleoni M (2008) Transient early expression of TNF-α in sciatic nerve and dorsal root ganglia in a mouse model of painful peripheral neuropathy. Neurosci Lett 436:210–213

    Article  PubMed  CAS  Google Scholar 

  • Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368

    Article  PubMed  CAS  Google Scholar 

  • Seltzer ZR, Dubner R, Shir Y (1990) A novel model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43:205–212

    Article  PubMed  CAS  Google Scholar 

  • Shibata T, Naruse K, Kamiya H, Kozakae M, Kondo M, Yasuda Y, Nakamura N, Ota K, Tosaki T, Matsuki T, Nakashima E, Hamada Y, Oiso Y, Nakamura J (2008) Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes 57:3099–3107

    Article  PubMed  CAS  Google Scholar 

  • Siniscalco D, Giordano C, Galderisi U, Luongo L, Alessio N, Di Bernardo G, de Novellis V, Rossi F, Maione S (2010) Intra-brain microinjection of human mesenchymal stem cells decreases allodynia in neuropathic mice. Cell Mol Life Sci 67:655–669

    Article  PubMed  CAS  Google Scholar 

  • Siniscalco D, Giordano C, Galderisi U, Luongo L, de Novellis V, Rossi F, Maione S (2011) Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice. Front Integr Neurosci 5:79

    Article  PubMed  CAS  Google Scholar 

  • Smith SB, Crager SE, Mogil JS (2004) Paclitaxel-induced neuropathic hypersensitivity in mice: responses in 10 inbred mouse strains. Life Sci 74:2593–2604

    Article  PubMed  CAS  Google Scholar 

  • Sommer C, Kress M (2004) Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett 361:184–187

    Article  PubMed  CAS  Google Scholar 

  • Sommer C, Lindenlaub T, Teuteberg P, Schafers M, Hartung T, Toyka KV (2001) Anti- TNF-neutralizing antibodies reduce pain-related behavior in two different mouse models of painful mononeuropathy. Brain Res 913:86–89

    Article  PubMed  CAS  Google Scholar 

  • Treede RD, Jensen TS, Campbell NJ, Cruccu G, Dostrovsky JO, Griffin JW, Hansson P, Hughes R, Nurmikko T, Serra J (2008) Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 70:1630–1635

    Article  PubMed  CAS  Google Scholar 

  • Tsuda M, Tozaki-Saitoh H, Inoue K (2010) Pain and purinergic signalling. Brain Res Rev 63:222–232

    Article  PubMed  CAS  Google Scholar 

  • Vallejo R, Tilley DM, Vogel L, Benyamin R (2010) The role of glia and the immune system in the development and maintenance of neuropathic pain. Pain Pract 10:167–184

    Article  PubMed  Google Scholar 

  • Valsecchi AE, Franchi S, Panerai AE, Sacerdote P, Trovato AE, Colleoni M (2008) Genistein, a natural phytoestrogen from soy, relieves neuropathic pain following chronic constriction sciatic nerve injury in mice: anti-inflammatory and antioxidant activity. J Neurochem 107:230–240

    Article  PubMed  CAS  Google Scholar 

  • Valsecchi AE, Franchi S, Panerai AE, Rossi A, Sacerdote P, Colleoni M (2011) The soy isoflavone genistein reverses oxidative and inflammatory state, neuropathic pain, neurotrophic and vasculature deficits in diabetes mouse model. Eur J Pharmacol 650:694–702

    Article  PubMed  CAS  Google Scholar 

  • Vareniuk I, Pavlov IA, Obrosova IG (2008) Inducible nitric oxide synthase gene deficiency counteracts multiple manifestations of peripheral neuropathy in a streptozotocin-induced mouse model of diabetes. Diabetologia 51:2126–2133

    Article  PubMed  CAS  Google Scholar 

  • Wang ZH, Zeng XY, Han SP, Fan GX, Wang JY (2012) Interleukin-10 of red nucleus plays anti-allodynia effect in neuropathic pain rats with spared nerve injury. Neurochem Res 37(8):1811–1819

    Article  PubMed  CAS  Google Scholar 

  • Watkins LR, Maier SF (2003) Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov 2:973–985

    Article  PubMed  CAS  Google Scholar 

  • Wodarsky R, Clark AK, Grist J, Marchand F, Malcangio M (2009) Gabapentin reverses microglia activation in the spinal cord of streptozotocin induced diabetic rats. Eur J Pain 13:807–811

    Article  Google Scholar 

  • Woolf CJ (2010) What is this thing called pain? J Cin Invest 120:3742–3744

    Article  CAS  Google Scholar 

  • Zimmermann M (2001) Pathobiology of neuropathic pain. Eur J Pharmacol 429:23–37

    Article  PubMed  CAS  Google Scholar 

  • Zuo Y, Perkins NM, Tracey DJ, Geczy CL (2003) Inflammation and hyperalgesia induced by nerve injury in the rat: a key role of mast cells. Pain 105:467–479

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Sacerdote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sacerdote, P., Franchi, S., Moretti, S. et al. Cytokine Modulation is Necessary for Efficacious Treatment of Experimental Neuropathic Pain. J Neuroimmune Pharmacol 8, 202–211 (2013). https://doi.org/10.1007/s11481-012-9428-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-012-9428-2

Keywords

Navigation