Log in

Simulation of nonlinear system dynamics of calcium and dopamine signaling in neurons

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The study of calcium ([Ca2+]) and dopamine (DA) as independent signaling systems generated limited information on each of these complex adaptive systems. Recently, an integer-order model of these two complex adaptive systems gave better insights into different regulatory mechanisms. However, these integer-order systems cannot generate information regarding the superdiffusion and memory with Brownian motion (BM) mechanisms. Also, the superdiffusion and memory triggering BM of [Ca2+] and dopamine signaling have not been investigated so far in neurons. Here, a fractional-order mathematical framework is proposed to investigate the nonlinear spatiotemporal interactive and adaptive system dynamics of [Ca2+] and dopamine in neurons. The fractional reaction–diffusion equations for [Ca2+] and dopamine with one-way feedback are incorporated in the present framework. The Crank–Nicholson (CN) procedure along with the Grunwald estimation concerning spatial derivatives and the L1 formula concerning temporal derivatives with Gauss–Seidel (GS) iterations have been utilized for numerical simulation. The novel information on the functioning of different mechanisms of [Ca2+] and DA in neurons due to the memory effects causing BM and superdiffusion has been obtained from numerical results. The proposed simulation approach is quite effective in generating the conditions causing the alterations in [Ca2+] and dopamine levels, which may result in neurological illnesses like Parkinson’s disease (PD), etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. E. Binder, B. Kinkead, M. Owens, C.B. Nemeroff, Neurotensin and dopamine interactions. Pharmacol. Rev. 53, 453–486 (2001)

    Google Scholar 

  2. H. Yuan, J.C. Zheng, P. Liu, S.F. Zhang, J.Y. Xu, L.M. Bai, Pathogenesis of Parkinson’s disease: oxidative stress, environmental impact factors and inflammatory processes. Neurosci. Bull. 23, 125–130 (2007). https://doi.org/10.1007/s12264-007-0018-x

    Article  Google Scholar 

  3. A.H. Stokes, T.G. Hastings, K.E. Vrana, Cytotoxic and genotoxic potential of dopamine. J. Neurosci. Res. 55, 659–665 (1999). https://doi.org/10.1002/(SICI)1097-4547(19990315)55:6%3c659::AID-JNR1%3e3.0.CO;2-C

    Article  Google Scholar 

  4. Z. Qi, G.W. Miller, E.O. Voit, Mathematical models of dopamine metabolism in parkinson’s disease. Syst. Biol. Park Dis (2012). https://doi.org/10.1007/978-1-4614-3411-5_8

    Article  Google Scholar 

  5. A.L. Fogelson, R.S. Zucker, Presynaptic calcium diffusion from various arrays of single channels implications for transmitter release and synaptic facilitation. Biophys. J. 48, 1003–1017 (1985). https://doi.org/10.1016/S0006-3495(85)83863-7

    Article  Google Scholar 

  6. J. Wagner, J. Keizer, Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys. J. 67, 447–456 (1994). https://doi.org/10.1016/S0006-3495(94)80500-4

    Article  ADS  Google Scholar 

  7. A. Verkhratsky, The endoplasmic reticulum and neuronal calcium signalling. Cell Calcium 32, 393–404 (2002). https://doi.org/10.1016/S0143416002001896

    Article  Google Scholar 

  8. J. Sneyd, S. Girard, D. Clapham, Calcium wave propagation by calcium-induced calcium release: an unusual excitable system. Bull. Math. Biol. (1993). https://doi.org/10.1016/S0092-8240(05)80268-X

    Article  Google Scholar 

  9. M. Brini, T. Calì, D. Ottolini, E. Carafoli, Neuronal calcium signaling: function and dysfunction. Cell. Mol. Life Sci. 71, 2787–2814 (2014). https://doi.org/10.1007/s00018-013-1550-7

    Article  Google Scholar 

  10. B.K. Jha, N. Adlakha, M.N. Mehta, Two-dimensional finite element model to study calcium distribution in astrocytes in presence of excess buffer. Int. J. Biomath. 7, 1–11 (2014). https://doi.org/10.1142/S1793524514500314

    Article  MathSciNet  Google Scholar 

  11. Y. Jagtap, N. Adlakha, Numerical model of hepatic glycogen phosphorylase regulation by nonlinear interdependent dynamics of calcium and IP3. Eur. Phys. J. Plus. 138, 1–13 (2023). https://doi.org/10.1140/epjp/s13360-023-03961-y

    Article  Google Scholar 

  12. V. Mishra, N. Adlakha, Numerical simulation of calcium dynamics dependent ATP degradation, IP3 and NADH production due to obesity in a hepatocyte cell. J. Biol. Phys. (2023). https://doi.org/10.1007/s10867-023-09639-x

    Article  Google Scholar 

  13. V. Mishra, N. Adlakha, Spatio temporal interdependent calcium and buffer dynamics regulating DAG in a hepatocyte cell due to obesity. J. Bioenerg. Biomembr. (2023). https://doi.org/10.1007/s10863-023-09973-8

    Article  Google Scholar 

  14. N. Manhas, K.R. Pardasani, Mathematical model to study IP3 Dynamics dependent calcium oscillations in pancreatic acinar cells. J. Med. Imag. Heal. Inform. 4, 874–880 (2014). https://doi.org/10.1166/jmihi.2014.1333

    Article  Google Scholar 

  15. N. Manhas, K.R. Pardasani, Modelling mechanism of calcium oscillations in pancreatic acinar cells. J. Bioenerg. Biomembr. 46, 403–420 (2014). https://doi.org/10.1007/s10863-014-9561-0

    Article  Google Scholar 

  16. K. Pathak, N. Adlakha, Finite element simulation of advection diffusion of calcium in myocyes involving influx and excess buffer. Adv. Comput. Sci. Technol. 10, 11–23 (2017)

    Google Scholar 

  17. N. Singh, N. Adlakha, Nonlinear dynamic modeling of 2-dimensional interdependent calcium and inositol 1,4,5-trisphosphate in cardiac myocyte. Math. Biol. Bioinform. 14, 290–305 (2019). https://doi.org/10.17537/2019.14.290

    Article  Google Scholar 

  18. N. Singh, N. Adlakha, Three dimensional coupled reaction-diffusion modeling of calcium and inositol 1,4,5-trisphosphate dynamics in cardiomyocytes. RSC Adv. 9, 42459–42469 (2019). https://doi.org/10.1039/c9ra06929a

    Article  ADS  Google Scholar 

  19. M. Kotwani, N. Adlakha, M.N. Mehta, Finite element model to study calcium diffusion with excess buffer approximation in fibroblast cell. Int. J. Comput. Appl. Math. 7, 503–514 (2012)

    Google Scholar 

  20. A.B. Kothiya, N. Adlakha, Cellular nitric oxide synthesis is affected by disorders in the interdependent Ca2+ and IP3 dynamics during cystic fibrosis disease. J. Biol. Phys. 49, 133–158 (2023). https://doi.org/10.1007/s10867-022-09624-w

    Article  Google Scholar 

  21. A.B. Kothiya, N. Adlakha, Simulation of biochemical dynamics of Ca2+ and PLC in fibroblast cell. J. Bioenerg. Biomembr. (2023). https://doi.org/10.1007/s10863-023-09976-5

    Article  Google Scholar 

  22. V. Tewari, S. Tewari, K.R. Pardasani, A model to study the effect of excess buffers and Na + ions on Ca 2+ diffusion in neuron cell. World Acad. Sci. Eng. Technol. 76, 41–46 (2011). https://doi.org/10.5281/zenodo.1054988

    Article  Google Scholar 

  23. S.G. Tewari, K.R. Pardasani, Modeling effect of sodium pump on calcium oscillations in neuron cells. J. Multiscale Model. 04, 1250010 (2012). https://doi.org/10.1142/s1756973712500102

    Article  MathSciNet  Google Scholar 

  24. H. Bhardwaj, N. Adlakha, Radial basis function based differential quadrature approach to study reaction diffusion of Ca2+ in T lymphocyte. Int. J. Comput. Methods (2022). https://doi.org/10.1142/S0219876222500591

    Article  Google Scholar 

  25. H. Bhardwaj, N. Adlakha, Model to study interdependent calcium and IP3 distribution regulating NFAT production in T lymphocyte. J. Mech. Med. Biol. (2023). https://doi.org/10.1142/S0219519423500550

    Article  Google Scholar 

  26. P.A. Naik, Modeling the mechanics of calcium regulation in T lymphocyte: a finite element method approach. Int J Biomath (2020). https://doi.org/10.1142/S1793524520500382

    Article  MathSciNet  Google Scholar 

  27. P.A. Naik, K.R. Pardasani, One dimensional finite element method approach to study effect of ryanodine receptor and serca pump on calcium distribution in oocytes. J. Multiscale Model. 05, 1350007 (2013). https://doi.org/10.1142/S1756973713500078

    Article  ADS  MathSciNet  Google Scholar 

  28. P.A. Naik, K.R. Pardasani, 2D finite-element analysis of calcium distribution in oocytes. Netw. Model. Anal. Heal. Inform. Bioinform. 7, 1–11 (2018). https://doi.org/10.1007/s13721-018-0172-2

    Article  Google Scholar 

  29. N.A. Vaishali, Disturbances in system dynamics of Ca2+ and IP3 perturbing insulin secretion in a pancreatic β -cell due to type-2 diabetes. J. Bioenerg. Biomembr. (2023). https://doi.org/10.1007/s10863-023-09966-73

    Article  Google Scholar 

  30. A. Tripathi, N. Adlakha, Finite element model to study calcium diffusion in a neuron cell involving jryr, jserca and jleak. J. Appl. Math. Inform 31, 695–709 (2013). https://doi.org/10.14317/jami.2013.695

    Article  MathSciNet  Google Scholar 

  31. D.D. Dave, B.K. Jha, Analytically depicting the calcium diffusion for Alzheimer’s affected cell. Int. J. Biomath. 11, 1–13 (2018). https://doi.org/10.1142/S1793524518500882

    Article  MathSciNet  Google Scholar 

  32. G.W. Zamponi, J. Striessnig, A. Koschak, A.C. Dolphin, The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol. Rev. 67, 821–870 (2015). https://doi.org/10.1124/pr.114.009654

    Article  Google Scholar 

  33. M.E. Soden, G.L. Jones, C.A. Sanford, A.S. Chung, A.D. Güler, C. Chavkin, R. Luján, L.S. Zweifel, Disruption of dopamine neuron activity pattern regulation through selective expression of a human KCNN3 mutation. Neuron 80, 997–1009 (2013). https://doi.org/10.1016/j.neuron.2013.07.044

    Article  Google Scholar 

  34. L.A. Sombers, M. Beyene, R.M. Carelli, R.M. Wightman, Synaptic overflow of dopamine in the nucleus accumbens arises from neuronal activity in the ventral tegmental area. J. Neurosci. 29, 1735–1742 (2009). https://doi.org/10.1523/JNEUROSCI.5562-08.2009

    Article  Google Scholar 

  35. E.V. Mosharov, K.E. Larsen, E. Kanter, K.A. Phillips, K. Wilson, Y. Schmitz, D.E. Krantz, K. Kobayashi, R.H. Edwards, D. Sulzer, Article interplay between cytosolic dopamine, calcium, and a -synuclein causes selective death of substantia Nigra neurons. Neuron 62, 218–229 (2009). https://doi.org/10.1016/j.neuron.2009.01.033

    Article  Google Scholar 

  36. M.K. Sanghera, J. Zamora, D.C. German, Calbindin-D 28k - containing Neurons in the Human hypothalamus: relationship to dopaminergic. Neurons 4, 375–381 (1995)

    Google Scholar 

  37. T. Yamada, P.L. Mcgeer, K.G. Baimbridge, E.G. Mcgeer, Relative sparing in Parkinson ’ s disease of substantia Nigra dopamine neurons containing calbindin-D2sK. Stem Cell Reports 526, 303–307 (1990)

    Google Scholar 

  38. Y. Tabata, Y. Imaizumi, M. Sugawara, T. Andoh-Noda, S. Banno, M.C. Chai, T. Sone, K. Yamazaki, M. Ito, K. Tsukahara, H. Saya, N. Hattori, J. Kohyama, H. Okano, T-type calcium channels determine the vulnerability of dopaminergic neurons to mitochondrial stress in familial parkinson disease. Stem Cell Reports 11, 1171–1184 (2018). https://doi.org/10.1016/j.stemcr.2018.09.006

    Article  Google Scholar 

  39. A. Mcmahon, B.S. Wong, A.M. Iacopino, M.C. Ng, S. Chi, D.C. German, Calbindin-D 28k buffers intracellular calcium and promotes resistance to degeneration in PC12 cells. Mole. Brain Res. 54(1), 56–63 (1998)

    Article  Google Scholar 

  40. A. Pawar, K.R. Pardasani, Computational model of calcium dynamics-dependent dopamine regulation and dysregulation in a dopaminergic neuron cell. Eur. Phys. J. Plus. 123, 1–19 (2023). https://doi.org/10.1140/epjp/s13360-023-03691-1

    Article  Google Scholar 

  41. A. Pawar, K.R. Pardasani, Effects of disorders in interdependent calcium and IP3 dynamics on nitric oxide production in a neuron cell. Eur. Phys. J. Plus. 137, 543 (2022). https://doi.org/10.1140/EPJP/S13360-022-02743-2

    Article  Google Scholar 

  42. A. Pawar, Effect of disturbances in neuronal calcium and IP3 dynamics on b -amyloid production and degradation. Cogn. Neurodyn. (2022). https://doi.org/10.1007/s11571-022-09815-0

    Article  Google Scholar 

  43. A. Pawar, K.R. Pardasani, Mechanistic insights of neuronal calcium and ­ IP 3 signaling system regulating ATP release during ischemia in progression of Alzheimer ’ s disease. Eur. Biophys. J. (2023). https://doi.org/10.1007/s00249-023-01660-1

    Article  Google Scholar 

  44. A. Pawar, K.R. Pardasani, Computational model of interacting system dynamics of calcium, IP 3 and β -amyloid in ischemic neuron cells. Phys. Scr. 99, 15025 (2024). https://doi.org/10.1088/1402-4896/ad16b5

    Article  ADS  Google Scholar 

  45. A. Pawar, K.R. Pardasani, Modelling cross talk in the spatiotemporal system dynamics of calcium, IP3 and nitric oxide in neuron cells. Cell Biochem. Biophys. (2024). https://doi.org/10.1007/s12013-024-01229-5

    Article  Google Scholar 

  46. R.L. Magin, Fractional calculus models of complex dynamics in biological tissues. Comput. Math. with Appl. 59, 1586–1593 (2010). https://doi.org/10.1016/j.camwa.2009.08.039

    Article  MathSciNet  Google Scholar 

  47. M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004). https://doi.org/10.1016/j.cam.2004.01.033

    Article  ADS  MathSciNet  Google Scholar 

  48. I. Podlubny, A. Chechkin, T. Skovranek, Y.Q. Chen, B.M. Vinagre Jara, Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 228, 3137–3153 (2009). https://doi.org/10.1016/j.jcp.2009.01.014

    Article  ADS  MathSciNet  Google Scholar 

  49. L.C. Cardoso, F.L.P. Dos Santos, R.F. Camargo, Analysis of fractional-order models for hepatitis B. Comput. Appl. Math. 37, 4570–4586 (2018). https://doi.org/10.1007/s40314-018-0588-4

    Article  MathSciNet  Google Scholar 

  50. M. Du, Z. Wang, H. Hu, Measuring memory with the order of fractional derivative. Sci. Rep. (2013). https://doi.org/10.1038/srep03431

    Article  Google Scholar 

  51. H. Joshi, B.K. Jha, On a reaction–diffusion model for calcium dynamics in neurons with Mittag-Leffler memory. Eur. Phys. J. Plus (2021). https://doi.org/10.1140/epjp/s13360-021-01610-w

    Article  Google Scholar 

  52. H. Joshi, B.K. Jha, Fractionally delineate the neuroprotective function of calbindin- D 2 8 k in Parkinson’s disease. Int. J. Biomath. 11, 1–19 (2018). https://doi.org/10.1142/S1793524518501036

    Article  MathSciNet  Google Scholar 

  53. M.A. Ezzat, A.S.E. Karamany, Fractional order heat conduction law in magneto-thermoelasticity involving two temperatures. Zeitschrift fur Angew. Math. und Phys. 62, 937–952 (2011). https://doi.org/10.1007/s00033-011-0126-3

    Article  ADS  MathSciNet  Google Scholar 

  54. E. Sousa, Finite difference approximations for a fractional advection diffusion problem. J. Comput. Phys. 228, 4038–4054 (2009). https://doi.org/10.1016/j.jcp.2009.02.011

    Article  ADS  MathSciNet  Google Scholar 

  55. A. Pawar, K.R. Pardasani, Fractional order interdependent nonlinear chaotic spatiotemporal calcium and Aβ dynamics in a neuron cell. Phys. Scr. (2023). https://doi.org/10.1088/1402-4896/ace1b2

    Article  Google Scholar 

  56. A. Pawar, K.R. Pardasani, Fractional-order reaction – diffusion model to study the dysregulatory impacts of superdiffusion and memory on neuronal calcium and IP3 dynamics. Eur. Phys. J. Plus (2023). https://doi.org/10.1140/epjp/s13360-023-04410-6

    Article  Google Scholar 

  57. A. Pawar, K.R. Pardasani, Nonlinear system dynamics of calcium and nitric oxide due to cell memory and superdiffusion in neurons. Commun. Theor. Phys. (2024). https://doi.org/10.1088/1572-9494/ad35b4

    Article  Google Scholar 

  58. J. Wagner, C.F. Fall, F. Hong, C.E. Sims, N.L. Allbritton, R.A. Fontanilla, I.I. Moraru, L.M. Loew, R. Nuccitelli, A wave of IP3 production accompanies the fertilization Ca2+ wave in the egg of the frog, Xenopus laevis: theoretical and experimental support. Cell Calcium 35, 433–447 (2004). https://doi.org/10.1016/j.ceca.2003.10.009

    Article  Google Scholar 

  59. D. Tello-Bravo, A mathematical model of dopamine neurotransmission. Gastron. Ecuatoriana y Tur. local. 1, 5–24 (1967)

    Google Scholar 

  60. G.D. Smith, Analytical steady-state solution to the rapid buffering approximation near an open Ca2+ channel. Biophys. J. 71, 3064–3072 (1996). https://doi.org/10.1016/S0006-3495(96)79500-0

    Article  ADS  Google Scholar 

  61. S.H. Walters, I.M. Taylor, Z. Shu, A.C. Michael, A novel restricted diffusion model of evoked dopamine. ACS Chem. Neurosci. 5, 776–783 (2014). https://doi.org/10.1021/cn5000666

    Article  Google Scholar 

  62. C. Tadjeran, M.M. Meerschaert, H.P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006). https://doi.org/10.1016/j.jcp.2005.08.008

    Article  ADS  MathSciNet  Google Scholar 

  63. Oldham, K., Spanier, J.: The fractional calculus theory and applications of differentiation and integration to arbitrary order. Academic Press, INC. (London) LTD. (1974)

Download references

Author information

Authors and Affiliations

Authors

Contributions

Authors have made equitable contributions to the present work concerning problem design and solution, data correction, literature examination, as well as interpretation of the results. Author (1) created the MATLAB code.

Corresponding author

Correspondence to Anand Pawar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, A., Pardasani, K.R. Simulation of nonlinear system dynamics of calcium and dopamine signaling in neurons. Eur. Phys. J. Plus 139, 390 (2024). https://doi.org/10.1140/epjp/s13360-024-05206-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05206-y

Navigation