Log in

Fractional-order reaction–diffusion model to study the dysregulatory impacts of superdiffusion and memory on neuronal calcium and IP3 dynamics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The models for the dynamics of single systems like calcium ([Ca2+]) in a neuron cell are able to provide information about factors affecting the calcium regulation in the neuron cell. But in realistic conditions, the dynamics of calcium also depends on the dynamics of other chemical molecules like inositol 1, 4, 5-trisphophate (IP3) in the nerve cell. Some research workers explored the interdependent [Ca2+] and IP3 signaling systems in neurons, but that too for integer-order systems only. The studies on integer-order system dynamics are not able to generate insights about the superdiffusion mechanisms, cell memory causing Brownian motion of signaling molecules in neurons. Few attempts to investigate fractional reaction–diffusion models of individual [Ca2+] dynamics have been reported in neurons. However, no attempt is noticed in the literature to analyze the interdependent fractional processes of [Ca2+] and IP3 dynamics in neurons. In the present paper, a mathematical model of nonlinear interdependent spatiotemporal [Ca2+] and IP3 signaling systems is proposed incorporating fractional diffusion processes and cell memory of [Ca2+] and IP3 causing Brownian motion effects in neurons. The numerical solution is obtained by the Crank–Nicolson scheme (CNS) with Grunwald estimation for fractional derivatives along spatial dimensions and L1 scheme for fractional derivatives along temporal dimensions with Gauss–Seidel (GS) iterations. The influences of the superdiffusion mechanism and cell memory on the interdependent [Ca2+] and IP3 signaling systems in neurons are analyzed with the help of numerical results. A significant difference in results is observed between fractional-order and integer-order dynamics. It is concluded that the cell can use memory effects and superdiffusion mechanisms to regulate the calcium and IP3 concentrations at appropriate levels. Further, the fractional-order processes like superdiffusion and cell memory can also be a cause of dysregulation of calcium and IP3 dynamics leading to neurological disorders like Parkinson’s, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. R. Llinas, Neurosci. Fourth Study Progr. 555 (1979)

  2. N. G. Connor, John A., Calcium Diffus. Buffering Nerve Cytoplasm ISSN 0075 (1982)

  3. H. Rasmussen, P.Q. Barrett, Physiol. Rev. 64, 938 (1984)

    Article  Google Scholar 

  4. J. Sneyd, S. Girard, D. Clapham, 55, (1993)

  5. J. Wagner, J. Keizer, Biophys. J. 67, 447 (1994)

    Article  ADS  Google Scholar 

  6. G.D. Smith, J. Wagner, J. Keizer, Biophys. J. 70, 2527 (1996)

    Article  ADS  Google Scholar 

  7. S.G. Tewari, K.R. Pardasani, IAENG Int. J. Appl. Math. 40, 1 (2010)

    MathSciNet  Google Scholar 

  8. S.G. Tewari, K.R. Pardasani, J. Multiscale Model. 04, 1250010 (2012)

    Article  Google Scholar 

  9. A. Tripathi, N. Adlakha, World Acad. Sci. Eng. Technol. 80, 739 (2011)

    Google Scholar 

  10. A. Jha, N. Adlakha, J. Med. Imaging Heal. Informatics 4, 547 (2014)

    Article  Google Scholar 

  11. B. K. Jha, N. Adlakha, M. N. Mehta, Int. J. Model. Simulation, Sci. Comput. 4, (2013)

  12. B.K. Jha, N. Adlakha, M.N. Mehta, Int. J. Biomath. 7, 1 (2014)

    Article  Google Scholar 

  13. N. Manhas, J. Sneyd, K.R. Pardasani, J. Biosci. 39, 463 (2014)

    Article  Google Scholar 

  14. N. Manhas, K.R. Pardasani, J. Bioenerg. Biomembr. 46, 403 (2014)

    Article  Google Scholar 

  15. K. Pathak, N. Adlakha, Alexandria. J. Med. 52, 261 (2016)

    Google Scholar 

  16. K.B. Pathak, N. Adlakha, J. Med. Imaging Heal. Informatics 5, 683 (2015)

    Article  Google Scholar 

  17. S. Panday, K.R. Pardasani, J. Med. Imaging Heal. Informatics 3, 374 (2013)

    Article  Google Scholar 

  18. P.A. Naik, K.R. Pardasani, Int. J. Comput. Methods 16, 1 (2019)

    Article  Google Scholar 

  19. P.A. Naik, K.R. Pardasani, Alexandria. J. Med. 52, 43 (2016)

    Google Scholar 

  20. P.A. Naik, K.R. Pardasani, J. Med. Imaging Heal. Informatics 5, 471 (2015)

    Article  Google Scholar 

  21. M. Kotwani, N. Adlakha, M.N. Mehta, Appl. Math. Sci. 6, 5063 (2012)

    Google Scholar 

  22. M. Kotwani, N. Adlakha, M.N. Mehta, J. Med. Imaging Heal. Informatics 4, 840 (2014)

    Article  Google Scholar 

  23. A.B. Kothiya, N. Adlakha, J. Biol. Phys. 49, 133 (2023)

    Article  Google Scholar 

  24. Y. Jagtap, N. Adlakha, Commun. Math. Biol. Neurosci. 2018, 1 (2018)

    Google Scholar 

  25. V. Mishra, N. Adlakha, J. Biol. Phys. (2023)

  26. V. Mishra, N. Adlakha, J. Bioenerg. Biomembr. (2023)

  27. H. Bhardwaj, N. Adlakha, Int. J. Comput. Methods (2022)

  28. H. Bhardwaj and N. Adlakha, J. Mech. Med. Biol. (2023).

  29. Vaishali, N. Adlakha, J. Bioenerg. Biomembr. (2023)

  30. F. Sala, A. Hernández-Cruz, Biophys. J. 57, 313 (1990)

    Article  ADS  Google Scholar 

  31. A. Tripathi, N. Adlakha, Appl. Math. Sci. 6, 455 (2012)

    Google Scholar 

  32. M.J. Berridge, R.F. Irvine, Nature 312, 315 (1984)

    Article  ADS  Google Scholar 

  33. M.J. Berridge, Nature 361, 315 (1993)

    Article  ADS  Google Scholar 

  34. J. Wagner, C.F. Fall, F. Hong, C.E. Sims, N.L. Allbritton, R.A. Fontanilla, I.I. Moraru, L.M. Loew, R. Nuccitelli, Cell Calcium 35, 433 (2004)

    Article  Google Scholar 

  35. M. Falcke, R. Huerta, M.I. Rabinovich, H.D.I. Abarbanel, R.C. Elson, A.I. Selverston, Biol. Cybern. 82, 517 (2000)

    Article  Google Scholar 

  36. J.N. Teramae, T. Fukai, J. Comput. Neurosci. 18, 105 (2005)

    Article  MathSciNet  Google Scholar 

  37. T. Furuichi, K. Mikoshiba, J Neuroquem 63 (1995)

  38. G.W.D.E. Young, J. Keizer, Biophysics (Oxf). 89, 9895 (1992)

    Google Scholar 

  39. Y.X. Li, J. Rinzel, J. Theor. Biol. 166, 461 (1994)

    Article  ADS  Google Scholar 

  40. N. Singh and N. Adlakha, Netw. Model. Anal. Heal. Informatics Bioinforma. 8, (2019).

  41. N. Singh, N. Adlakha, Math. Biol. Bioinforma. 14, 290 (2019)

    Article  Google Scholar 

  42. Y. Jagtap, N. Adlakha, Eur. Phys. J. Plus 138, 1 (2023)

    Article  Google Scholar 

  43. A. Pawar, K.R. Pardasani, Eur. Phys. J. Plus 137, 543 (2022)

    Article  Google Scholar 

  44. A. Pawar, K.R. Pardasani, Cogn. Neurodyn. 2022, 1 (2022)

    Google Scholar 

  45. A. Pawar, K. R. Pardasani, Eur. Biophys. J. (2023)

  46. A. Pawar, K. R. Pardasani, Eur. Phys. J. Plus 2022 1378 137, 1 (2022)

  47. A. Pawar and K. R. Pardasani, Cogn. Neurodyn. 1 (2022).

  48. A. Pawar, K.R. Pardasani, Eur. Phys. J. Plus 123, 1 (2023)

    Google Scholar 

  49. P.A. Naik, M. Yavuz, S. Qureshi, J. Zu, S. Townley, Eur. Phys. J. Plus 135, 1 (2020)

    Article  Google Scholar 

  50. A. Pawar, K. R. Pardasani, Phys. Scr. 98, (2023)

  51. R.L. Magin, J.R. Bourne, 32, (2004)

  52. F. Mainardi, Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics (2012)

  53. M.M. Meerschaert, C. Tadjeran, J. Comput. Appl. Math. 172, 65 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  54. R.L. Magin, Comput. Math. with Appl. 59, 1586 (2010)

    Article  MathSciNet  Google Scholar 

  55. I. Podlubny, A. Chechkin, T. Skovranek, Y. Q. Chen, B. M. Vinagre Jara, J. Comput. Phys. 228, 3137 (2009)

  56. L.C. Cardoso, F.L.P. Dos Santos, R.F. Camargo, Comput. Appl. Math. 37, 4570 (2018)

    Article  MathSciNet  Google Scholar 

  57. M. Du, Z. Wang, H. Hu, Sci. Rep. 3, (2013)

  58. H. Joshi, B. K. Jha, Eur. Phys. J. Plus 136, (2021)

  59. H. Joshi, B.K. Jha, Comput. Appl. Math. 39, 1 (2020)

    Article  Google Scholar 

  60. M.A. Ezzat, A.S.E. Karamany, Zeitschrift Fur Angew. Math. Und Phys. 62, 937 (2011)

    Article  ADS  Google Scholar 

  61. E. Sousa, J. Comput. Phys. 228, 4038 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  62. A. S. Chaves, Phys. Lett. Sect. A Gen. At. Solid State Phys. 239, 13 (1998)

  63. C.E. Sims, N.L. Allbrittont, J. Biol. Chem. 273, 4052 (1998)

    Article  Google Scholar 

  64. A. Bugrim, R. Fontanilla, B.B. Eutenier, J. Keizer, R. Nuccitelli, Biophys. J. 84, 1580 (2003)

    Article  ADS  Google Scholar 

  65. G.D. Smith, Biophys. J. 71, 3064 (1996)

    Article  ADS  Google Scholar 

  66. S.A. Brown, F. Morgan, J. Watras, L.M. Loew, Biophys. J. 95, 1795 (2008)

    Article  ADS  Google Scholar 

  67. B.K. Jha, H. Joshi, D.D. Dave, Interdiscip. Sci. Comput. Life Sci. 10, 674 (2018)

    Google Scholar 

  68. M. Brini, T. Calì, D. Ottolini, E. Carafoli, Cell. Mol. Life Sci. 71, 2787 (2014)

    Article  Google Scholar 

  69. C. Tadjeran, M.M. Meerschaert, H.P. Scheffler, J. Comput. Phys. 213, 205 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  70. K. Oldham,J. Spanier, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order (Academic Press, INC. (London) LTD., 1974)

Download references

Author information

Authors and Affiliations

Authors

Contributions

Concerning problem formulation, literature review, solution, and interpretation of findings, both authors equitably contributed to this research. Author (1) develops the MATLAB program.

Corresponding author

Correspondence to Anand Pawar.

Appendix: Model equations summary

Appendix: Model equations summary

For the solution of Eqs. (1) and (7), the CNS with Grunwald approximation to the fractional derivatives along space is expressed as [69]:

$$ \frac{{{\partial ^{{V_1}}}C}}{{\partial {x^{{{\rm{V}}_1}}}}} = \sum\limits_{k = 0}^{{\rm{i + 1}}} {\mkern 1mu} {\rm{ }}\left( {\frac{1}{{2{h^{{{\rm{V}}_1}}}{\mkern 1mu} }}g{1_{\rm{k}}}{C_{{\rm{i}} - {\rm{k}} + 1}}^{\rm{j}} + \frac{1}{{2{h^{{{\rm{V}}_1}}}{\mkern 1mu} }}g{1_{\rm{k}}}C_{{\rm{i - k + 1}}}^{{\rm{j + 1}}}{\rm{ }}} \right) $$
(18)
$$\frac{{{\partial ^{{V_2}}}P}}{{\partial {x^{{{\rm{V}}_2}}}}} = \sum\limits_{k = 0}^{{\rm{i + 1}}} {\left( {\frac{1}{{2{h^{{{\rm{V}}_2}}}{\mkern 1mu} }}g{2_{\rm{k}}}{P_{{\rm{i}} - {\rm{k}} + 1}}^{\rm{j}} + \frac{1}{{2{h^{{{\rm{V}}_2}}}{\mkern 1mu} }}g{2_{\rm{k}}}P_{{\rm{i - k + 1}}}^{{\rm{j + 1}}}} \right)} {\rm{ }} $$
(19)

Here, C = [Ca2+] and P = IP3 and h represents step size along space, for i = 1, 2, 3, …, K-1. The normalized Grunwald weights g1k and g2k, which are dependent on the index k and order V1 and V2, sequentially can be represented as shown below:

$$ {{g1}}_{{\text{k}}} { = }\frac{{{{\Gamma (k - V}}_{{1}} {)}}}{{{{\Gamma ( - V}}_{{1}} {{)\Gamma (k + 1)}}}} $$
(20)
$$ {{g2}}_{{\text{k}}} { = }\frac{{{{\Gamma (k - V}}_{2} {)}}}{{{{\Gamma ( - V}}_{2} {{)\Gamma (k + 1)}}}} $$
(21)

For Eqs. (1) and (7), the expressions for the fractional time derivative by the L1 formula are proposed by Oldham and Spanier [70] and shown as below:

$$ \frac{{\partial^{{{\text{U}}_{{1}} }} {{C}}}}{{\partial {{t}}^{{{\text{U}}_{{1}} }} }}{ = }\frac{{1}}{{{{\Gamma (2 - U}}_{{1}} {)}}}\sum\limits_{{{k = 0}}}^{{\text{j}}} {\frac{{{{b1}}_{{\text{k}}} {{(C}}_{{\text{i }}}^{{\text{j} + 1 - {\text{k}}}} {{ - C}}_{{\text{i }}}^{{\text{j} - {\text{k}}}} { )}}}{{{{(\Delta t)}}^{{{\text{U}}_{{1}} }} }}} $$
(22)
$$ \frac{{\partial^{{{\text{U}}_{2} }} {{P}}}}{{\partial {\text{t}}^{{{\text{U}}_{2} }} }}{ = }\frac{{1}}{{{{\Gamma (2 - U}}_{2} {)}}}\sum\limits_{{{k = 0}}}^{{\text{j}}} {\frac{{{{b2}}_{{\text{k}}} {{(P}}_{{\text{i }}}^{{\text{j} + 1 - {\text{k}}}} {{ - P}}_{{\text{i }}}^{{\text{j} - {\text{k}}}} { )}}}{{{{(\Delta t)}}^{{{\text{U}}_{2} }} }}} $$
(23)

where

$$b{1_{\rm{k}}} = {(k + 1)^{{\rm{1}} - {{\rm{U}}_1}}} - {(k)^{1 - {{\rm{U}}_1}}} $$
(24)
$$ {{b2}}_{{\text{k}}} ={{ (k + 1)}}^{{{{1 - \text{U}}}_{2} }} -{{ (k)}}^{{{{1 - \text{U}}}_{2} }} $$
(25)

For solving the acquired fractional-order equations, the CNS with Grunwald estimation along space derivative and the L1 formula along time derivative are utilized.

Utilizing Eqs. (18 & 22) in Eq. (1), we have

$$ \begin{aligned} \frac{{1}}{{{{\Gamma (2 - U}}_{{1}} {)}}}\sum\limits_{{\text{k = 0}}}^{{\text{j}}} {\frac{{{{b1}}_{{\text{k}}} {\text{(C}}_{{\text{i }}}^{{\text{j + 1} - \text{k}}} {{ - C}}_{{\text{i }}}^{{\text{j } - \text{k}}} { )}}}{{{{(\Delta t)}}^{{{\text{U}}_{{1}} }} }}}& = {{D}}_{{{\text{Ca}}}} \left( {\frac{{1}}{{{{2h}}^{{{\text{V}}_{{1}} }} \, }}\sum\limits_{{\text{k = 0}}}^{{\text{i + 1}}} {\frac{{{{\Gamma (k - V}}_{{1}} {)}}}{{{{\Gamma ( - V}}_{{1}} {{)\Gamma (k + 1)}}}} \, } {{C}}_{{\text{i} - \text{k + 1}}}^{{\text{j}}} + \frac{{1}}{{{{2h}}^{{{\text{V}}_{{1}} }} \, }}\sum\limits_{{{k = 0}}}^{{\text{i + 1}}} {\frac{{{{\Gamma (k - V}}_{{1}} {)}}}{{{{\Gamma ( - V}}_{{1}} {{)\Gamma (k + 1)}}}} \, } {{C}}_{{\text{i } - \text{ k + 1}}}^{{\text{j + 1}}} } \right) \\ \, & \quad + \frac{{1}}{{{{F}}_{{\text{C}}} }}\left( \begin{gathered} {{V}}_{{{\text{IPR}}}} {{m}}^{{3}} {{h}}^{{3}} \left( {{{C}}_{{{\text{ER}}}} - {{C}}_{{\text{i}}}^{{\text{j}}} } \right) - {{V}}_{{{\text{SERCA}}}} \left( {\frac{{\left( {{{C}}_{{\text{i}}}^{{\text{j}}} } \right)^{2} }}{{\left( {{{C}}_{{\text{i}}}^{{\text{j}}} } \right)^{2} + \left( {{{K}}_{{{\text{SERCA}}}} } \right)^{2} }}} \right) \hfill \\ + {{V}}_{{{\text{LEAK}}}} \left( {{{C}}_{{{\text{ER}}}} - {{C}}_{{\text{i}}}^{{\text{j}}} } \right) \hfill \\ \end{gathered} \right) \, - {{K}}^{ + } \left[ {\text{B}} \right]_{\infty } \left( {{{C}}_{{\text{i}}}^{{\text{j}}} - {{C}}_{\infty } } \right) \\ \end{aligned} $$
(26)

Utilizing the Eqs. (19 and 23) in Eq. (7), we obtain

$$ \begin{aligned} \frac{{1}}{{{{\Gamma (2 - U}}_{2} {)}}}\sum\limits_{{\text{k = 0}}}^{{\text{j}}} {\frac{{{{b2}}_{{\text{k}}} {{(P}}_{{\text{i }}}^{{{\text{j + 1}} - {{k}}}} \, - {{P}}_{{\text{i }}}^{{{\text{j}} - {{k}}}} { )}}}{{{{(\Delta t)}}^{{{\text{U}}_{2} }} }}} =\, & {{D}}_{{\text{a}}} \left( {\frac{{1}}{{{{2h}}^{{{\text{V}}_{{2}} }} \, }}\sum\limits_{{\text{k = 0}}}^{{\text{i + 1}}} {\frac{{{{\Gamma (k}} - {{V}}_{{2}} {)}}}{{{\Gamma (} - {{V}}_{{2}} {{)\Gamma (k + 1)}}}} \, } {{P}}_{{{\text{i}} - {{k + 1}}}}^{{\text{j}}} + \frac{{1}}{{{{2h}}^{{{\text{V}}_{{2}} }} \, }}\sum\limits_{{{k = 0}}}^{{\text{i + 1}}} {\frac{{{{\Gamma (k}} - {{V}}_{{2}} {)}}}{{{\Gamma (} - {{V}}_{{2}} {{)\Gamma (k + 1)}}}} \, } {{P}}_{{{{i}} - {{k + 1}}}}^{{\text{j + 1}}} } \right) \\ & \quad { + }\frac{1}{{{{F}}_{{{c}}} }}\left( \begin{gathered} {{V}}_{{{\text{production}}}} \left( {\frac{{\left( {{{C}}_{{\text{i}}}^{{\text{j}}} } \right)^{2} }}{{\left( {{{C}}_{{\text{i}}}^{{\text{j}}} } \right)^{2} + \left( {{{K}}_{{{\text{production}}}} } \right)^{2} }}} \right) - {\lambda V}_{{\text{a}}} \left( {{1} - \left( {\frac{{{{C}}_{{\text{i}}}^{{\text{j}}} }}{{{{C}}_{{\text{i}}}^{{\text{j}}} { + 0}{{.39}}}}} \right)} \right)\left( {\frac{{{{P}}_{{\text{i}}}^{{\text{j}}} }}{{{{P}}_{{\text{i}}}^{{\text{j}}} { + 2}{{.5}}}}} \right) \hfill \\ - {\lambda V}_{{\text{b}}} \left( {\frac{{{{C}}_{{\text{i}}}^{{\text{j}}} }}{{{{C}}_{{\text{i}}}^{{\text{j}}} { + 0}{{.39}}}}} \right)\left( {\frac{{{\text{P}}_{{\text{i}}}^{{\text{j}}} }}{{{{P}}_{{\text{i}}}^{{\text{j}}} { + 0}{{.5}}}}} \right) - {\lambda V}_{{{\text{ph}}}} \left( {\frac{{{{P}}_{{\text{i}}}^{{\text{j}}} }}{{{{P}}_{{\text{i}}}^{{\text{j}}} { + 30}}}} \right) \hfill \\ \end{gathered} \right) \\ \end{aligned} $$
(27)

From Eq. (26), we obtain,

$$ \begin{aligned} & \frac{{1}}{{{{\Gamma (2 - U}}_{{1}} {)}}}\sum\limits_{{\text{k} = 0}}^{{\text{j}}} {\frac{{{{b1}}_{{\text{k}}} {{(C}}_{{\text{i }}}^{{\text{j} + 1 - \text{k}}} {{ - C}}_{{\text{i }}}^{{\text{j} - \text{k}}} { )}}}{{{{(\Delta t)}}^{{{\text{U}}_{{1}} }} }}} \\ & \quad = {{D}}_{{{\text{Ca}}}} \left( {\frac{{1}}{{{{2h}}^{{{\text{V}}_{{1}} }} \, }}\sum\limits_{{\text{k = 0}}}^{{\text{i} + 1}} {{{g1}}_{{\text{k}}} \, } {{C}}_{{\text{i} - \text{k} + 1}}^{{\text{j}}} + \frac{{1}}{{{{2h}}^{{{\text{V}}_{{1}} }} \, }}\sum\limits_{{{k = 0}}}^{{\text{i} + 1}} {{{g1}}_{{\text{k}}} } {{C}}_{{\text{i} - \text{k} + 1}}^{{\text{j} + 1}} } \right){{ + d1(C}}_{{\text{i}}}^{{\text{j}}} {{,P}}_{{\text{i}}}^{{\text{j}}} {)} + {{f}}_{\text{i}}^{\text{j} + 1} \end{aligned}$$
(28)
$$ \begin{aligned} \sum\limits_{{{k = 0}}}^{{\text{j}}} {{{b1}}_{{\text{k}}} {{(C}}_{{\text{i }}}^{{\text{j} + 1 - \text{k}}} {{ - C}}_{{\text{i }}}^{{\text{j} - \text{k}}} { )}} = & {{D}}_{{{\text{Ca}}}} \frac{{{{\Gamma (2 - U}}_{{1}} {{)(\Delta t)}}^{{{\text{U}}_{{1}} }} }}{{{{2h}}^{{{\text{V}}_{{1}} }} }}\left( {\sum\limits_{{\text{k = 0}}}^{{\text{i} + 1}} {{{g1}}_{{\text{k}}} \, } {{C}}_{{\text{i} - \text{k} + 1}}^{{\text{j}}} + \sum\limits_{{{k = 0}}}^{{\text{i} + 1}} {{{g1}}_{{\text{k}}} } {{C}}_{{\text{i} - \text{k} + 1}}^{{\text{j} + 1}} } \right) \\ \, & \quad \, + {{\Gamma (2 - U}}_{{1}} {{)(\Delta t)}}^{{{\text{U}}_{{1}} }} {{d1(C}}_{{\text{i}}}^{{\text{j}}} {{,P}}_{{\text{i}}}^{{\text{j}}} {)} + {{\Gamma (2 - U}}_{{1}} {{)(\Delta t)}}^{{{\text{U}}_{{1}} }} {{f1}}_{{\text{i}}}^{{\text{j} + 1}} \\ \end{aligned} $$
(29)

Defining, \({{B1 = D}}_{{{\text{Ca}}}} \frac{{{{\Gamma (2 - U}}_{{1}} {{)(\Delta t)}}^{{{\text{U}}_{{1}} }} }}{{{{2h}}^{{{\text{V}}_{{1}} }} }}\), then Eq. (29) can be written as follows:

$$ \begin{aligned} \sum\limits_{{\text{k = 0}}}^{{\text{j}}} {{{b1}}_{{\text{k}}} {{(C}}_{{\text{i }}}^{{\text{j} + 1 - \text{k}}} {{ - C}}_{{\text{i }}}^{{\text{j} - \text{k}}} { )}} = & {{B1}}\left( {\sum\limits_{{\text{k = 0}}}^{{\text{i} + 1}} {{{g1}}_{{\text{k}}} \, } {{C}}_{{\text{i} - \text{k} + 1}}^{{\text{j}}} + \sum\limits_{{{k = 0}}}^{{\text{i} + 1}} {{\text{g1}}_{{\text{k}}} } {{C}}_{{\text{i} - \text{k} + 1}}^{{\text{j} + 1}} } \right) \\ \, & \quad \, + {{\Gamma (2 - U}}_{{1}} {{)(\Delta t)}}^{{{\text{U}}_{{1}} }} {{d1(C}}_{{\text{i}}}^{{\text{j}}} {{,P}}_{{\text{i}}}^{{\text{j}}} {)} + {{\Gamma (2 - U}}_{{1}} {{)(\Delta t)}}^{{{\text{U}}_{{1}} }} {{f1}}_{{\text{i}}}^{{\text{j} + 1}} \\ \end{aligned} $$
(30)
$$ \begin{aligned} & {{b1}}_{0} {{(C}}_{{\text{i }}}^{{\text{j + 1 }}} {{ - C}}_{{\text{i }}}^{{\text{j }}} {)} + {{b1}}_{1} {{(C}}_{{\text{i }}}^{{\text{j }}} {{ - C}}_{{\text{i }}}^{{\text{j } - \text{ 1}}} {)} + \sum\limits_{{{k = 2}}}^{{\text{j}}} {{{b1}}_{{\text{k}}} {{(C}}_{{\text{i }}}^{{\text{j + 1 } - \text{ k}}} {{ - C}}_{{\text{i }}}^{{\text{j } - \text{ k}}} { )}} \\ & \quad = {{B1g1}}_{0} {{C}}_{{\text{i + 1 }}}^{{\text{j}}} + {{B1g1}}_{1} {{C}}_{{\text{i }}}^{{\text{j}}} + {{B1}}\left( {\sum\limits_{{\text{k = 2}}}^{{\text{i}}} {{{g1}}_{{\text{k}}} } {{C}}_{{\text{i } - \text{ k}}}^{{\text{j}}} } \right) \\ & \quad \quad \, + {{B1g1}}_{0} {{C}}_{{\text{i + 1 }}}^{{\text{j + 1}}} + {{B1g1}}_{1} {{C}}_{{\text{i }}}^{{\text{j + 1}}} + {{B1g1}}_{2} {{C}}_{{\text{i } - \text{ 1 }}}^{{\text{j + 1}}} \\ \, & \quad \quad \, + {{B1}}\left( {\sum\limits_{{{k = 3}}}^{{\text{i}}} {{{g1}}_{{\text{k}}} } {{C}}_{{\text{i } - \text{ k}}}^{{\text{j + 1}}} } \right) + {{\Gamma (2 - U}}_{{1}} {{)(\Delta t)}}^{{{\text{U}}_{{1}} }} {{f1}}_{{\text{i}}}^{{\text{j + 1}}} \\ \end{aligned} $$
(31)
$$ \begin{aligned} & {{ - B1g1}}_{0} {{C}}_{{\text{i + 1 }}}^{{\text{j + 1 }}} + \left( {{{b1}}_{{0}} {{ - B1g1}}_{1} } \right){{C}}_{{\text{i }}}^{{\text{j + 1}}} {{ - B1g1}}_{2} {{C}}_{{\text{i } - \text{ 1 }}}^{{\text{j + 1 }}} {{ - B1}}\left( {\sum\limits_{{\text{k = 3}}}^{{\text{i + 1}}} {{{g1}}_{{\text{k}}} } {{C}}_{{\text{i } - \text{ k + 1}}}^{{\text{j + 1}}} } \right) \, \\ & \quad {{ = B1g1}}_{0} {{C}}_{{\text{i + 1 }}}^{{\text{j}}} + \left( {{{B1g1}}_{1} {{ + b1}}_{{0}} {{ - b1}}_{{1}} } \right){{C}}_{{\text{i }}}^{{\text{j}}} \\ \, & \quad \quad \, + {{b1}}_{1} {{C}}_{{\text{i }}}^{{\text{j } - \text{ 1}}} + {{B1}}\left( {\sum\limits_{{\text{k = 2}}}^{{\text{i + 1}}} {{{g1}}_{{\text{k}}} } {{C}}_{{\text{i } - \text{ k + 1}}}^{{\text{j}}} } \right) - \sum\limits_{{\text{k = 2}}}^{{\text{j}}} {{{b1}}_{{\text{k}}} {{(C}}_{{\text{i }}}^{{\text{j + 1 } - \text{ k}}} {{ - C}}_{{\text{i }}}^{{\text{j } - \text{ k}}} { )}} \\ \, & \quad \quad \, + {{\Gamma (2 - U}}_{{1}} {{)(\Delta t)}}^{{{\text{U}}_{{1}} }} {{d1(C}}_{{\text{i}}}^{{\text{j}}} {{,P}}_{{\text{i}}}^{{\text{j}}} {)} + {{\Gamma (2 - U}}_{{1}} {{)(\Delta t)}}^{{{\text{U}}_{{1}} }} {{f1}}_{{\text{i}}}^{{\text{j + 1}}} \\ \end{aligned} $$
(32)

where \({{d1(C}}_{{\text{i}}}^{{\text{j}}} {{,P}}_{{\text{i}}}^{{\text{j}}} {)}\) depicts the nonlinear terms for Eq. (26).

Equation (32) expresses the nonlinear equations system, which is rewritten as,

$$ \begin{aligned} {\overline{{A}}}1{\overline{{C}}}^{{\text{j + 1}}} &= {{\overline{M}1 \overline{C}}}^{{\text{j}}} + ({{b1}}_{1} {{C}}_{{\text{i }}}^{{\text{j } - \text{ 1}}} - \sum\limits_{{{k = 2}}}^{{\text{j}}} {{{b1}}_{{\text{k}}} {{(C}}_{{\text{i }}}^{{\text{j + 1 } - \text{ k}}} {{ - C}}_{{\text{i }}}^{{\text{j } - \text{ k}}} { )}} ) \\ & \quad + {{\Gamma (2 - U}}_{{1}} {{)(\Delta t)}}^{{{\text{U}}_{{1}} }} {{d1(C}}_{{\text{i}}}^{{\text{j}}} {{,P}}_{{\text{i}}}^{{\text{j}}} {{) + \Gamma (2 - U}}_{{1}} {{)(\Delta t)}}^{{{{U}}_{{1}} }} {\overline{{F}}\text{1}}^{\text{j} + 1} \\ \end{aligned} $$
(33)

where

$$ {\overline{{C}}}^{{\text{j + 1}}} = \left[ {{{C}}_{{0}}^{{\text{j + 1}}} {{, C}}_{{1}}^{{\text{j + 1}}} {{, C}}_{{2}}^{{\text{j + 1}}} {, }...{{ , C}}_{{{K}}}^{{\text{j + 1}}} } \right]^{{\text{T}}} $$
(34)
$$ {\overline{{C}}}^{{\text{j}}} = \left[ {{{0, C}}_{{1}}^{{\text{j}}} {{, C}}_{{2}}^{{\text{j}}} {, }...{{ , C}}_{{\text{K } - \text{ 1}}}^{{\text{j}}} } \right]^{{\text{T}}} $$
(35)
$$ {\overline{{F}}}1^{{\text{j}}} = \left[ {{{0, f1}}_{{1}}^{{\text{j}}} {{, f1}}_{{2}}^{{\text{j}}} {, }...{{, f1}}_{{\text{K } - \text{ 1}}}^{{\text{j}}} } \right]^{{\text{T}}} $$
(36)

The coefficients matrix is expressed by \({{\overline{A}1 = [A1}}_{{\text{i,j}}} {] }\) for i, j = 1, 2, …, K-1 as,

$$A{1_{{\rm{i,j}}}} = \left\{ {\begin{array}{*{20}{l}}0&{{\mkern 1mu} {\rm{When }}j \ge i + 2}\\{ - g{1_0}B1}&{{\rm{When }}j = i + 1}\\{b{1_0} - g{1_1}B1}&{{\rm{When }}j = i{\rm{ }}}\\{ - g{1_2}B1}&{{\rm{When }}j = i - 1{\rm{ }}}\\{ - g{1_{{\rm{i - j + 1}}}}B1}&{{\rm{When }}j \le i - 1{\rm{ }}}\end{array}} \right\} $$
(37)

Similarly, utilizing the L1 scheme along temporal dimensions and the CNS with Grunwald estimation along spatial dimensions for Eq. (27), we obtain the nonlinear equations system as,

$$ \begin{aligned} {{\overline{A}2 \overline{P}}}^{{\text{j} + 1}} = & {{ \overline{M}2 \overline{C}}}^{{\text{j}}} + ({{b2}}_{1} {{P}}_{{\text{i }}}^{{\text{j} - 1}} - \sum\limits_{{\text{k = 2}}}^{{\text{j}}} {{{b2}}_{{\text{k}}} {{(P}}_{{\text{i }}}^{{\text{j} + 1 - \text{k}}} {{ - P}}_{{\text{i }}}^{{\text{j} - \text{k}}} { )}} ) \\ \, & \quad \, + {{\Gamma (2 - U}}_{2} {{)(\Delta t)}}^{{{\text{U}}_{2} }} {{d2(C}}_{{\text{i}}}^{{\text{j}}} {{,P}}_{{\text{i}}}^{{\text{j}}} {{) + \Gamma (2 - U}}_{2} {{)(\Delta t)}}^{{{\text{U}}_{2} }} {\overline{{F}}\text{2}}^{{\text{j + 1}}} \\ \end{aligned} $$
(38)

where \({{d2(C}}_{{\text{i}}}^{{\text{j}}} {{,P}}_{{\text{i}}}^{{\text{j}}} {)}\) depicts the nonlinear terms of Eq. (27), where

$$ {\overline{{P}}}^{{\text{j + 1}}} = \left[ {{{P}}_{{0}}^{{\text{j} + 1}} {{, P}}_{{1}}^{{\text{j} + 1}} {{, P}}_{{2}}^{{\text{j} + 1}} {, }...{{ , P}}_{{\text{K}}}^{{\text{j} + 1}} } \right]^{{\text{T}}} $$
(39)
$$ {\overline{{P}}}^{{\text{j}}} =\left[ {{{0, P}}_{{1}}^{{\text{j}}} {{, P}}_{{2}}^{{\text{j}}} {, }...{{ , P}}_{{\text{K} - 1}}^{{\text{j}}} } \right]^{{\text{T}}} $$
(40)
$$ {\overline{{F}}\text{2}}^{{\text{j}}} = \left[ {{{0, f2}}_{{1}}^{{\text{j}}} {{, f2}}_{{2}}^{{\text{j}}} {, }...{{, f2}}_{{\text{K} - 1}}^{{\text{j}}} } \right]^{{\text{T}}} $$
(41)

The coefficients matrix is expressed by \({{\overline{A}2 = [A2}}_{{\text{i,j}}} {] }\) for i, j = 1, 2, 3, …, K-1 as follows:

$$A{2_{{\rm{i,j}}}} = \left\{ {\begin{array}{*{20}{l}}0&{{\mkern 1mu} {\rm{When }}j \ge i + 2}\\{ - g{2_0}B2}&{{\rm{When }}j = i + 1}\\{b{2_0} - g{2_1}B2}&{{\rm{When }}j = i{\rm{ }}}\\{ - g{2_2}B2}&{{\rm{When }}j = i - 1{\rm{ }}}\\{ - g{2_{{\rm{i}} - {\rm{j}} + 1}}B2}&{{\rm{When }}j \le i - 1{\rm{ }}}\end{array}} \right\}$$
(42)

where\({{B2 = D}}_{{\text{i}}} \frac{{{{\Gamma (2 - U}}_{2} {{)(\Delta t)}}^{{{\text{U}}_{2} }} }}{{{{2h}}^{{{\text{V}}_{2} }} }}\).

Let λ1 is an eigenvalue of matrix A1, such that A1X = λ1X for some non-zero vector X. Consider \(\left| {{{x}}_{{\text{i}}} } \right|{{ = max}}\left\{ {\left| {{{x}}_{{\text{j}}} } \right|:{{ j = 0, 1, 2, }}...{{, K}}} \right\}\), then \(\sum\nolimits_{{\text{j = 0}}}^{{\text{K}}} {{{A1}}_{{\text{i,j}}} } {{ x}}_{{\text{j}}} {{ = \lambda }}_{{1}} {{x}}_{{\text{i}}}\), this implies

$$ {\uplambda }_{{1}} {{ = A1}}_{{\text{i,i}}} + \sum\limits_{{{{j = 0, j}} \ne {{i}}}}^{{\text{K}}} {{{A1}}_{{\text{i,j}}} } \frac{{{{x}}_{{\text{j}}} }}{{{{x}}_{{\text{i}}} }} $$
(43)

Putting the Ai,j values in Eq. (43), we obtain

$$ {\uplambda }_{{1}} {{ = b1}}_{{0}} {{ - B1g1}}_{1} {{ - B1g1}}_{0} \frac{{{{x}}_{{\text{i} + 1}} }}{{{{x}}_{{\text{i}}} }}{{ - B1g1}}_{2} \frac{{{{x}}_{{\text{i} - 1}} }}{{{{x}}_{{\text{i}}} }}{{ - B1}}\left( {\sum\limits_{{\text{j = 0}}}^{{\text{i - 2}}} {{{g1}}_{{\text{i} - \text{j} + 1}} } \frac{{{{x}}_{{\text{j}}} }}{{{{x}}_{{\text{i}}} }}} \right) $$
(44)
$$ {\uplambda }_{{1}} {{ = b1}}_{{0}} {{ - B1}}\left( {g1_{1} + \sum\limits_{{{\text{j = 0, j}} \ne {{i}}}}^{{\text{i + 1}}} {{{g1}}_{{\text{i - j + 1}}} } \frac{{{{x}}_{{\text{j}}} }}{{{{x}}_{{\text{i}}} }}} \right) $$
(45)

Since \(\left( {\sum\nolimits_{{{K = 0}}}^{\infty } {{{g1}}_{{\text{K}}} } = 0} \right)\) and g11 is the only expression in Grunwald weights sequence that is negative, and \({{g1}}_{{1}} { = } - {{V}}_{{1}}\) and thus for \({{1 < V}}_{{1}} \le {2 }\)

$$ {{ - g1}}_{{1}} \ge \sum\limits_{{{\text{K = 0,K}} \ne {1}}}^{{{j}}} {{{g1}}_{{\text{K}}} } {{ for j = 0, 1, 2, }}... $$
(46)

Since \(\left| {\frac{{{{x}}_{{\text{j}}} }}{{{{x}}_{{\text{i}}} }}} \right| \le 1{{ and g1}}_{{\text{j}}} \ge 0,{{ for j = 0, 2, 3, }}...{, }\)

$$ \sum\limits_{{{{j = 0, j}} \ne {{i}}}}^{{\text{i} + 1}} {{{g1}}_{{\text{i} - \text{j} + 1}} } \left| {\frac{{{{x}}_{{\text{j}}} }}{{{{x}}_{{\text{i}}} }}} \right| \le \sum\limits_{{{\text{j} = 0, \text{j}} \ne {{i}}}}^{{\text{i} + 1}} {{{g1}}_{{\text{i} - \text{j} + 1}} } \le {{g1}}_{{1}} $$
(47)
$$ {{g1}}_{{1}} + \sum\limits_{{{\text{j} = 0, \text{j}} \ne {{i}}}}^{{\text{i} + 1}} {{{g1}}_{{\text{i} -\text{ j} + 1}} } \left| {\frac{{{{x}}_{{\text{j}}} }}{{{{x}}_{{\text{i}}} }}} \right| \le 0 $$
(48)

Similarly, for the matrix A2,

$$ {{g2}}_{{1}} + \sum\limits_{{{\text{j} = 0, \text{j}} \ne {{i}}}}^{{\text{i}+ 1}} {{{g2}}_{{\text{i} - \text{j} + 1}} } \left| {\frac{{{{x}}_{{\text{j}}} }}{{{{x}}_{{\text{i}}} }}} \right| \le 0 $$
(49)

For interdependent [Ca2+] and IP3 signaling systems, we get the matrix representation as follows:

$${{{[A]}}_{{{2K + 1 \times 2K + 1}}}} = {\left[ {\begin{array}{*{20}{c}}{{{{{[A1]}}}_{{{K \times K}}}}}&0\\0&{{{{{[A2]}}}_{{{K \times K}}}}}\end{array}} \right]_{{{2K + 1 \times 2K + 1}}}}$$
(50)

Because, B1 and B2 are non-negative real numbers, all the eigenvalues of A1, A2 and A fulfill the condition \(\left| {\uplambda } \right| \ge 1\). Then, matrix A is invertible, and each eigenvalue of A−1 satisfies \(\left| {\upeta } \right| \le 1\). Therefore, the spectral radius of matrix is \({{\rho (A}}^{{ - 1}} {)} \le 1\) and suggests that the employed scheme is unconditionally stable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, A., Pardasani, K.R. Fractional-order reaction–diffusion model to study the dysregulatory impacts of superdiffusion and memory on neuronal calcium and IP3 dynamics. Eur. Phys. J. Plus 138, 780 (2023). https://doi.org/10.1140/epjp/s13360-023-04410-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04410-6

Navigation