Log in

Angiogenesis in hepatocellular carcinoma

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The published data concerning angiogenesis processes in hepatocellular carcinoma are systematized in the present review. The basic morphogenetic steps of neovascularization, namely, sinusoidal capillarization, tissue arterialization, and vascular mimicry and cooperation, are considered. A detailed analysis of activators and inhibitors of angiogenesis in tumors in general, and hepatocellular carcinoma in particular, is presented. The key parameters of angiogenesis and growth factors associated with clinical characteristics and prognosis of the disease are enumerated. The progressive increase in blood supply through the hepatic artery and consequent reduction of blood flow through the portal vein system concomitantly to the increase of the degree of malignancy of hepatocellular carcinoma are emphasized. Special attention is paid to the development of approaches for the detection of markers for specific stages of angiogenesis and antiangiogenic therapies for malignant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiba, J., Yano, H., Ogasawara, S., et al., Expression and function of interleukin-8 in human hepatocellular carcinoma, Int. J. Oncol., 2001, vol. 18, pp. 257–264.

    CAS  PubMed  Google Scholar 

  • Altekruse, S.F., McGlynn, K.A., and Reichman, M.E., Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005, J. Clin. Oncol., 2009, vol. 27, pp. 1485–1491.

    Article  PubMed Central  PubMed  Google Scholar 

  • Asahara, T., Bauters, C., Zheng, L.P., et al., Synergistic effect of vascular endothelial growth factor and basic growth factor on angiogenesis in vivo, Circulation, 1995, vol. 92, pp. 365–371.

    Article  CAS  Google Scholar 

  • Augustin, H.G., Koh, G.Y., Thurston, G., and Alitalo, K., Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system, Nat. Rev. Mol. Cell. Biol., 2009, vol. 10, pp. 165–177.

    Article  CAS  PubMed  Google Scholar 

  • Azenshtein, E., Meshel, T., Shina, S., et al., The angiogenic factors CXCL8 and VEGF in breast cancer: regulation by an array of pro-malignancy factors, Cancer Lett., 2005, vol. 217, pp. 73–86.

    Article  CAS  PubMed  Google Scholar 

  • Banin, V.V., The role of extracellular matrix in the regulation of angiogenesis, Reg. Krovoobrashch. Mikrotsirkulyatsiya, 2006, vol. 5, no. 1, pp. 13–19.

    Google Scholar 

  • Benjamin, L.E., Hemo, I., and Keshet, E., A plasticity window for blood vessel remodeling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF, Development, 1998, vol. 125, pp. 1591–1598.

    CAS  PubMed  Google Scholar 

  • Bergers, G., Brekken, R., McMahon, G., et al., Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis, Nat. Cell Biol., 2000, vol. 2, pp. 737–744.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bergers, G., Song, S., Meyer-Morse, N., et al., Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors, J. Clin. Invest., 2003, vol. 111, pp. 1287–1295.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borzio, M., Fargion, S., Borzio, F., et al., Impact of large regenerative, low grade and high grade dysplastic nodules in hepatocellular carcinoma development, J. Hepatol., 2003, vol. 39, pp. 208–214.

    Article  PubMed  Google Scholar 

  • Cao, R., Bråkenhielm, E., Pawliuk, R., et al., Angiogenic synergism, vascular stability and improvement of hindlimb ischemia by a combination of PDGF-BB and FGF-2, Nat. Med., 2003, vol. 9, pp. 604–613.

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet, P., Mechanisms of angiogenesis and arteriogenesis, Nat. Med., 2000, vol. 6, pp. 389–395.

    Article  CAS  PubMed  Google Scholar 

  • Carr, B.I., Hepatocellular carcinoma: current management and future trends, Gastroenterology, 2004, vol. 127, pp. 218–224.

    Article  Google Scholar 

  • Cheng, A.S., Chan, H.L., To, K.F., et al., Cyclooxygenase2 pathway correlates with vascular endothelial growth factor expression and tumor angiogenesis in hepatitis B virus-associated hepatocellular carcinoma, Int. J. Oncol., 2004, vol. 24, pp. 853–860.

    CAS  PubMed  Google Scholar 

  • Coulon, S., Heindryckx, F., Geerts, A., et al., Angiogenesis in chronic liver disease and its complications, Liver Int., 2011, vol. 31, pp. 146–162.

    Article  CAS  PubMed  Google Scholar 

  • Dejana, E., Orsenigo, F., and Lampugnani, M.G., The role of adherents junctions and VE-cadherin in the control of vascular permeability, J. Cell Sci., 2008, vol. 121, pp. 2115–2122.

    Article  CAS  PubMed  Google Scholar 

  • El-Assal, O.N., Yamanoi, A., Ono, T., et al., The clinicopathological significance of heparanase and basic fibroblast growth factor expressions in hepatocellular carcinoma, Clin. Cancer Res., 2001, vol. 7, pp. 1299–1305.

    CAS  PubMed  Google Scholar 

  • El-Serag, H.B. and Rudolph, K.L., Hepatocellular carcinoma: epidemiology and molecular carcinogenesis, Gastroenterology, 2007, vol. 132, pp. 2557–2576.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, M., Semela, D., Bruix, J., et al., Angiogenesis in liver disease, J. Hepatol., 2009, vol. 50, pp. 604–620.

    Article  CAS  PubMed  Google Scholar 

  • Ferrara, N. and Davis-Smyth, T., The biology of vascular endothelial growth factor, Endocrinol. Rev., 1997, vol. 18, pp. 4–25.

    Article  CAS  Google Scholar 

  • Ferrara, N., Gerber, H.P., and LeCouter, J., The biology of VEGF and its receptors, Nat. Med., 2003, vol. 9, pp. 669–676.

    Article  CAS  PubMed  Google Scholar 

  • Fiedler, U., Krissl, T., Koidl, S., et al., Angiopoietin-1 and angiopoietin-2 share the same binding domains in the Tie-2 receptor involving the first Ig-like loop and the epidermal growth factor-like repeats, J. Biol. Chem., 2003, vol. 278, pp. 1721–1727.

    Article  CAS  PubMed  Google Scholar 

  • Folberg, R., Hendrix, M.J., and Maniotis, A.J., Vasculogenic mimicry and tumor angiogenesis, Am. J. Pathol., 2000, vol. 156, pp. 361–381.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Folkman, J., What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst., 1990, vol. 82, pp. 4–6.

    Article  CAS  PubMed  Google Scholar 

  • Frachon, S., Gouysse, G., Dumortier, J., et al., Endothelial cell marker expression in dysplastic lesions of the liver: an immunohistochemical study, J. Hepatol., 2001, vol. 34, pp. 850–857.

    Article  CAS  PubMed  Google Scholar 

  • Fukumura, D., Xu, L., Chen, Y., et al., Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo, Cancer Res., 2001, vol. 61, pp. 6020–6024.

    CAS  PubMed  Google Scholar 

  • Fukumura, D., Yuan, F., Monsky, W.L., et al., Effect of host microenvironment on the microcirculation of human colon adenocarcinoma, Am. J. Pathol., 1997, vol. 151, pp. 679–688.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Giannelli, G., Bergamini, C., Fransvea, E., et al., Human hepatocellular carcinoma (HCC) cells require both alpha-3ßl integrin and matrix metalloproteinases activity for migration and invasion, Lab. Invest., 2001, vol. 81, pp. 613–627.

    Article  CAS  PubMed  Google Scholar 

  • Giannelli, G., Bergamini, C., Marinosci, F., et al., Clinical role of MMP-2/TIMP-2 imbalance in hepatocellular carcinoma, Int. J. Cancer, 2002, vol. 97, pp. 425–431.

    Article  CAS  PubMed  Google Scholar 

  • Gorrin-Rivas, M.J., Arii, S., Mon, A., et al., Implications of human macrophage metalloelastase and vascular endothelial growth factor gene expression in angiogenesis of hepatocellular carcinoma, Ann. Surg., 2000, vol. 231, pp. 67–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guzman, G., Cotler, S.J., Lin, A.Y., et al., A pilot study of vasculogenic mimicry immunohistochemical expression in hepatocellular carcinoma, Arch. Pathol. Lab. Med., 2007, vol. 131, pp. 1776–1781.

    PubMed Central  PubMed  Google Scholar 

  • Hayashi, M., Matsui, O., Ueda, K., et al., Correlation between the blood supply and grade of malignancy of hepatocellular nodules associated with liver cirrhosis: evaluation by CT during intraarterial injection of contrast medium, Am. J. Rentgenol., 1999, vol. 172, pp. 969–976.

    Article  CAS  Google Scholar 

  • Hemming, A.W., Cattral, M.S., Reed, A.I., et al., Liver transplantation for hepatocellular carcinoma, Ann. Surg., 2001, vol. 233, pp. 652–659.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hillen, F. and Griffioen, A.W., Tumor vascularization: sprouting angiogenesis and beyond, Cancer Metastasis Rev., 2007, vol. 26, pp. 489–502.

    Article  PubMed Central  PubMed  Google Scholar 

  • Himeno, H., Enzan, H., Saibara, T., et al., Hitherto unrecognized arterioles within hepatocellular carcinoma, J. Pathol., 1994, vol. 174, pp. 217–222.

    Article  CAS  PubMed  Google Scholar 

  • Ho, J.W., Pang, R.W., Lau, C., et al., Significance of circulating endothelial progenitor cells in hepatocellular carcinoma, Hepatology, 2006, vol. 44, pp. 836–843.

    Article  CAS  PubMed  Google Scholar 

  • Huang, H., Bhat, A., Woodnutt, G., and Lappe, R., Targeting the ANGPT-TIE2 pathway in malignancy, Nat. Rev. Cancer, 2010, vol. 10, pp. 575–585.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y., Chen, X., Dikov, M.M., et al., Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF, Blood, 2007, vol. 110, pp. 624–631.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang, Y., Goel, S., Duda, D.G., et al., Vascular normalization as an emerging strategy to enhance cancer immunotherapy, Cancer Res., 2013, vol. 73, pp. 2943–2498.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ichida, T., Hata, K., Yamada, S., et al., Subcellular abnormalities of liver sinusoidal lesions in human hepatocellular carcinoma, J. Submicrosc. Cytol. Pathol., 1990, vol. 22, pp. 221–229.

    CAS  PubMed  Google Scholar 

  • Jung, J.O., Gwak, G.Y., Lim, Y.S., et al., Role of hepatic stellate cells in the angiogenesis of hepatoma, Korean J. Gastroenterol., 2003, vol. 42, pp. 142–148.

    PubMed  Google Scholar 

  • Jungermann, K. and Kietzmann, T., Oxygen: modulator of metabolic zonation and disease of the liver, Hepatology, 2000, vol. 31, pp. 255–260.

    Article  CAS  PubMed  Google Scholar 

  • Kaseb, A.O., Morris, J.S., Hassan, M.M., et al., Clinical and prognostic implications of plasma insulin-like growth factor-1 and vascular endothelial growth factor in patients with hepatocellular carcinoma, J. Clin. Oncol., 2011, vol. 29, pp. 3892–3899.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaufman, B., Scharf, O., Arbeit, J., et al., Proceedings of the oxygen homeostasis/hypoxia meeting, Cancer Res., 2004, vol. 64, pp. 3350–3356.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.R., Kudo, M., Hino, O., et al., Epidemiology of hepatocellular carcinoma in Japan and Korea. A review, Oncology, 2008, vol. 75, suppl. 1, pp. 13–16.

    Article  PubMed  Google Scholar 

  • Kin, M., Sata, M., Ueno, T., et al., Basic fibroblast growth factor regulates proliferation and motility of human hepatoma cells by an autocrine mechanism, J. Hepatol., 1997, vol. 27, pp. 677–687.

    Article  CAS  PubMed  Google Scholar 

  • Kubo, F., Ueno, S., Hiwatashi, K., et al., Interleukin 8 in human hepatocellular carcinoma correlates with cancer cell invasion of vessels but not with tumor angiogenesis, Ann. Surg. Oncol., 2005, vol. 12, pp. 800–807.

    Article  PubMed  Google Scholar 

  • Lawler, J., Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth, J. Cell. Mol. Med., 2002, vol. 6, pp. 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.S., Semela, D., Iredale, J., and Shah, V.H., Sinusoidal remodeling and angiogenesis: a new function for the liver specific pericyte? Hepatology, 2007, vol. 45, pp. 817–825.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenberger, B.M., Tan, P.K., Niederleithner, H., et al., Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development, Cell, 2010, vol. 140, pp. 268–279.

    Article  CAS  PubMed  Google Scholar 

  • Llovet, J.M., Pena, C.E., Lathia, C.D., et al., Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma, Clin. Cancer Res., 2012, vol. 18, pp. 2290–2300.

    Article  CAS  PubMed  Google Scholar 

  • Llovet, J.M., Ricci, S., Mazzaferro, V., et al., Sorafenib in advanced hepatocellular carcinoma, N. Engl. J. Med., 2008, vol. 359, pp. 378–390.

    Article  CAS  PubMed  Google Scholar 

  • Lyden, D., Hattori, K., Dias, S., et al., Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth, Nat. Med., 2001, vol. 7, pp. 1194–1201.

    Article  CAS  PubMed  Google Scholar 

  • Marschall von, Z., Cramer, T., Hocker, M., et al., Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human hepatocellular carcinoma, Gut, 2001, vol. 48, pp. 87–96.

    Article  Google Scholar 

  • Martin, D.C., Sanchez-Sweatman, O.H., Ho, A.T., et al., Transgenic TIMP-1 inhibits simian virus 40 T antigeninduced hepatocarcinogenesis by impairment of hepatocellular proliferation and tumor angiogenesis, Lab. Invest., 1999, vol. 79, pp. 225–234.

    CAS  PubMed  Google Scholar 

  • Medina, J., Caveda, L., Sanz-Cameno, P., et al., Hepatocyte growth factor activates endothelial proangiogenic mechanisms relevant in chronic hepatitis C-associated neoangiogenesis, J. Hepatol., 2003, vol. 38, pp. 660–667.

    Article  CAS  PubMed  Google Scholar 

  • Medina, J., Sanz-Cameno, P., Garcia-Buey, L., et al., Evidence of angiogenesis in primary biliary cirrhosis: an immunohistochemical descriptive study, J. Hepatol., 2005, vol. 42, pp. 124–131.

    Article  CAS  PubMed  Google Scholar 

  • Michalopoulos, G.K., Liver regeneration, J. Cell. Physiol., 2007, vol. 213, pp. 286–300.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mise, M., Arii, S., Higashituji, H., et al., Clinical significance of vascular endothelial growth factor and basic fibroblast growth factor gene expression in liver tumor, Hepatology, 1996, vol. 23, pp. 455–464.

    Article  CAS  PubMed  Google Scholar 

  • Mishnev, O.D. and Shchegolev, A.I., Pathological anatomy and problems of pathogenesis of angiodysplasias, in Angiodispalzii (vrozhdennye poroki razvitiya sosudov) (Angiodysplasia (Congenital Defect of Development of the Vessels)), Dan, V.N. and Sapelkin, S.V., Eds., Moscow: Verdana, 2008, pp. 34–53.

    Google Scholar 

  • Mitsuhashi, N., Shimizu, H., Ohtsuka, M., et al., Angiopoietins and Tie-2 expression in angiogenesis and proliferation of human hepatocellular carcinoma, Hepatology, 2003, vol. 37, pp. 1105–1113.

    Article  CAS  PubMed  Google Scholar 

  • Monvoisin, A., Bisson, C., Si-Tayeb, K., et al., Involvement of matrix metalloproteinase type-3 in hepatocyte growth factor-induced invasion of human hepatocellular carcinoma cells, Int. J. Cancer, 2002, vol. 97, pp. 157–162.

    Article  CAS  PubMed  Google Scholar 

  • Moon, E.J., Jeong, C.H., Jeong, J.W., et al., Hepatitis B virus X protein induces angiogenesis by stabilizing hypoxiainducible factor-1a, FASEB J., 2004, vol. 18, pp. 382–384.

    CAS  PubMed  Google Scholar 

  • Morinaga, S., Imada, T., Shimizu, A., et al., Angiogenesis in hepatocellular carcinoma as evaluated by alpha smooth muscle actin immunohistochemistry, Hepatogastroenterology, 2001, vol. 48, pp. 224–228.

    CAS  PubMed  Google Scholar 

  • Motegi, K., Harada, K., Pazouki, S., et al., Evidence of a biphasic effect of thrombospondin-1 on angiogenesis, Histochem. J., 2002, vol. 34, pp. 411–421.

    Article  CAS  PubMed  Google Scholar 

  • Musso, O., Theret, N., Heljasvaara, R., et al., Tumor hepatocytes and basement membrane-producing cells specifically express two different forms of the endostatin precursor, collagen XVIII, in human liver cancers, J. Hepatol., 2001, vol. 33, pp. 868–876.

    Article  CAS  Google Scholar 

  • Nakamura, S., Muro, H., Suzuki, S., et al., Immunohistochemical studies on endothelial cell phenotype in hepatocellular carcinoma, J. Hepatol., 1997, vol. 26, pp. 407–415.

    Article  CAS  Google Scholar 

  • Papetti, M. and Herman, I.M., Mechanisms of normal and tumor-derived angiogenesis, Am. J. Physiol., 2002, vol. 282, pp. 947–970.

    Article  Google Scholar 

  • Park, Y.N., Kim, Y.B., Yang, K.M., and Park, C., Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis, Arch. Pathol. Lab. Med., 2000, vol. 124, pp. 1061–1065.

    CAS  PubMed  Google Scholar 

  • Parkin, D.M., Bray, F., Ferlay, J., and Pisani, P., Global cancer statistics, 2002, Cancer J. Clin., 2005, vol. 55, pp. 74–108.

    Article  Google Scholar 

  • Pavlov, K.A., Dubova, E.A., and Shchegolev, A.I., Fetoplacental angiogenesis at normal pregnancy: the role of placental growth factor and angiopoietins, Akush. Ginekol. (Moscow), 2010, no. 6, pp. 10–15.

    Google Scholar 

  • Peters, B.A., Diaz, L.A., Polyak, K., et al., Contribution of bone marrow-derived endothelial cells to human tumor vasculature, Nat. Med., 2005, vol. 11, pp. 261–262.

    Article  CAS  PubMed  Google Scholar 

  • Poon, R.T., Chung, K.K., Cheung, S.T., et al., Clinical significance of thrombospondin 1 expression in hepatocellular carcinoma, Clin. Cancer Res., 2004, vol. 10, pp. 4150–4157.

    Article  CAS  PubMed  Google Scholar 

  • Poon, R.T., Fan, S.T., and Wong, J., Clinical significance of angiogenesis in gastrointestinal cancers: a target for novel prognostic and therapeutic approaches, Ann. Surg., 2003, vol. 238, pp. 9–28.

    PubMed Central  PubMed  Google Scholar 

  • Rafii, S., Lyden, D., Benezra, R., et al., Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat. Rev. Cancer, 2002, vol. 2, pp. 826–835.

    Article  CAS  PubMed  Google Scholar 

  • Risau, W., Mechanisms of angiogenesis, Nature, 1997, vol. 386, pp. 671–674.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Manzaneque, J.C., Lane, T.F., Ortega, M.A., et al., Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 12485–12490.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roncalli, M., Roz, E., Coggi, G., et al., The vascular profile of regenerative and dysplastic nodules of the cirrhotic liver: implications for diagnosis and classification, Hepatology, 1999, vol. 30, pp. 1174–1178.

    Article  CAS  PubMed  Google Scholar 

  • Ross, M.A., Sander, C.M., Kleeb, T.B., et al., Spatiotemporal expression of angiogenesis growth factor receptors during the revascularization of regenerating rat liver, Hepatology, 2001, vol. 34, pp. 1135–1148.

    Article  CAS  PubMed  Google Scholar 

  • Saharinen, P. and Alitalo, K., Double target for tumor mass destruction, J. Clin. Invest., 2003, vol. 111, pp. 1277–1280.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salcedo, X., Medina, J., Sanz-Cameno, P., et al., The potential of angiogenesis soluble markers in chronic hepatitis C, Hepatology, 2005, vol. 42, pp. 696–701.

    Article  CAS  PubMed  Google Scholar 

  • Sanz-Cameno, P., Martín-Vilchez, S., Lara-Pezzi, E., et al., Hepatitis B virus promotes angiopoietin-2 expression in liver tissue: role of HBV X protein, Am. J. Pathol., 2006, vol. 169, pp. 1215–1222.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sanz-Cameno, P., Martin-Vilchez, S., Rodriguez-Munoz, Y., et al., Intrahepatic angiopoietin-2 protein expression modulation by hepatitis c virus: MAPK, PI3K and reactive oxygen species (ROS) implication, J. Hepatol., 2008, vol. 48, suppl. 2, pp. 230–231.

    Article  Google Scholar 

  • Schweigerer, L., Neufeld, G., Friedman, J., et al., Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth, Nature, 1987, vol. 325, pp. 257–259.

    Article  CAS  PubMed  Google Scholar 

  • Shchegolev, A.I., Dubova, E.A., and Tumanova, U.N., Vascularization of hepatocellular carcinoma tissue depends on its differentiation degree, Bull. Exp. Biol. Med., 2012, vol. 153, no. 4, pp. 490–494.

    Article  CAS  Google Scholar 

  • Shchegolev, A.I., Mishnev, O.D., and Tin’kova, I.O., Onkomorfologiya pecheni (Oncologic Morphology of Liver), Moscow: Ross. Gos. Med. Univ., 2006.

    Google Scholar 

  • Semela, D. and Dufour, J.F., Angiogenesis and hepatocellular carcinoma, J. Hepatol., 2004, vol. 41, pp. 864–880.

    Article  PubMed  Google Scholar 

  • Semela, D., Piguet, A.C., Kolev, M., et al., Vascular remodeling and antitumoral effects of mTOR inhibition in a rat model of hepatocellular carcinoma, J. Hepatol., 2007, vol. 46, pp. 840–848.

    Article  CAS  PubMed  Google Scholar 

  • Shi, H., Huang, Y., Zhou, H., et al., Nucleolin is a receptor that mediates antiangiogenic and antitumor activity of endostatin, Blood, 2007, vol. 110, pp. 2899–2906.

    Article  CAS  PubMed  Google Scholar 

  • Shichiri, M. and Hirata, Y., Antiangiogenesis signals by endostatin, FASEB J., 2001, vol. 15, pp. 1044–1053.

    Article  CAS  PubMed  Google Scholar 

  • Shimamura, T., Saito, S., Morita, K., et al., Detection of vascular endothelial growth factor and its receptor expression in human hepatocellular carcinoma biopsy specimens, J. Gastroenterol. Hepatol., 2000, vol. 5, pp. 640–646.

    Article  Google Scholar 

  • Shin, E.C., Choi, Y.H., Kim, J.S., et al., Expression patterns of cytokines and chemokines genes in human hepatoma cells, Yonsei Med. J., 2002, vol. 43, pp. 657–664.

    Article  CAS  PubMed  Google Scholar 

  • Stoll, B.R., Migliorini, C., Kadambi, A., et al., A mathematical model of the contribution of endothelial progenitor cells to angiogenesis in tumors: implications for antiangiogenic therapy, Blood, 2003, vol. 102, pp. 2555–2561.

    Article  CAS  PubMed  Google Scholar 

  • Sugimachi, K., Tanaka, S., Taguchi, K., et al., Angiopoietin switching regulates angiogenesis and progression of human hepatocellular carcinoma, J. Clin. Pathol., 2003, vol. 56, pp. 854–860.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun, B., Zhang, S., Zhang, D., et al., Vasculogenic mimicry is associated with high tumor grade, invasion and metastasis, and short survival in patients with hepatocellular carcinoma, Oncol. Rep., 2006, vol. 16, pp. 693–698.

    CAS  PubMed  Google Scholar 

  • Tang, Y., Nakada, M.T., Kesavan, P., et al., Extracellular matrix metalloproteinase inducer stimulates tumor angiogenesis by elevating vascular endothelial cell growth factor and matrix metalloproteinases, Cancer Res., 2005a, vol. 65, pp. 3193–3199.

    CAS  PubMed  Google Scholar 

  • Tang, T.C., Poon, R.T., Lau, C.P., et al., Tumor cyclooxygenase-2 levels correlate with tumor invasiveness in human hepatocellular carcinoma, World J. Gastroenterol., 2005b, vol. 11, pp. 1896–1902.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Terme, M., Pernot, S., Marcheteau, E., et al., VEGFAVEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer, Cancer Res., 2013, vol. 73, pp. 539–549.

    Article  CAS  PubMed  Google Scholar 

  • Thorgeirsson, S.S. and Grisham, J.W., Molecular pathogenesis of human hepatocellular carcinoma, Nat. Genet., 2002, vol. 31, pp. 339–346.

    Article  CAS  PubMed  Google Scholar 

  • Thurston, G., Rudge, J.S., Ioffe, E., et al., Angiopoietin-1 protects the adult vasculature against plasma leakage, Nat. Med., 2000, vol. 6, pp. 460–463.

    Article  CAS  PubMed  Google Scholar 

  • Torimura, T., Ueno, T., Kin, M., et al., Overexpression of angiopoietin-1 and angiopoietin-2 in hepatocellular carcinoma, J. Hepatol., 2004, vol. 40, pp. 799–807.

    Article  CAS  PubMed  Google Scholar 

  • Tumanova, U.N., Dubova, E.A., Karmazanovskii, G.G., and Shchegolev, A.I., Computer-tomographic and morphological comparisons in hepatocellular carcinoma with various degree of differentiation, Mol. Med., 2012, no. 5, pp. 35–40.

    Google Scholar 

  • Tumanova, U.N., Dubova, E.A., Karmazanovskii, G.G., and Shchegolev, A.I., Computer-tomographic assessment of the blood ciculation of the liver hepatocellular carcinoma, Ann. Khirurg. Gepatol., 2013b, no. 4, pp. 53–60.

    Google Scholar 

  • Tumanova, U.N., Karmazanovskii, G.G., and Shchegolev, A.I., Computer-tomographic characteristics of the degree of vascularization of hepatocellular carcinoma, Med. Vizualizatsiya, 2013a, no. 1, pp. 52–58.

    Google Scholar 

  • Vajkoczy, P., Farhadi, M., Gaumann, A., et al., Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2, J. Clin. Invest., 2002, vol. 109, pp. 777–785.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Villanueva, A. and Llovet, J.M., Targeted therapies for hepatocellular carcinoma, Gastroenterology, 2011, vol. 140, pp. 1410–1426.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Visse, R. and Nagase, H., Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry, Circ. Res., 2003, vol. 92, pp. 827–839.

    Article  CAS  PubMed  Google Scholar 

  • Wajih, N. and Sane, D.C., Angiostatin selectively inhibits signaling by hepatocyte growth factor in endothelial and smooth muscle cells, Blood, 2003, vol. 101, pp. 1857–1863.

    Article  CAS  PubMed  Google Scholar 

  • Weng, J., Gouw, A.S., Heuvel, M.C., et al., Angiogenic characteristics in hepatocellular carcinomas: a comparison of HCCs in cirrhotic and non-cirrhotic livers and the influence of grading, Hepatology, 2006, vol. 44, suppl. 1, p. 506A.

    Google Scholar 

  • Wicki, A. and Christofori, G., The angiogenic switch in tumorigenesis, in Tumor Angiogenesis: Basic Mechanisms and Cancer Therapy, Marmé, D. and Fusenig, N., Eds., Berlin: Springer-Verlag, 2008, pp. 67–88.

    Chapter  Google Scholar 

  • Wittchen, E.S., Endothelial signaling in paracellular and transcellular leukocyte transmigration, Front. Biosci., 2009, vol. 14, pp. 2522–2545.

    Article  CAS  Google Scholar 

  • Yamasaki, M., Ikeda, K., Nakatani, K., et al., Phenotypical and morphological alterations to rat sinusoidal endothelial cells in arterialized livers after portal branch ligation, Arch. Histol. Cytol., 1999, vol. 62, pp. 401–411.

    Article  CAS  PubMed  Google Scholar 

  • Yoshiji, H., Kuriyama, S., Noguchi, R., et al., Angiopoietin 2 displays a vascular endothelial growth factor dependent synergistic effect in hepatocellular carcinoma development in mice, Gut, 2005a, vol. 54, pp. 1768–1775.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshiji, H., Kuriyama, S., Yoshii, J., et al., Synergistic effect of basic fibroblast growth factor and vascular endothelial growth factor in murine hepatocellular carcinoma, Hepatology, 2002, vol. 35, pp. 834–842.

    Article  CAS  PubMed  Google Scholar 

  • Yoshiji, H., Noguchi, R., Kuriyama, S., et al., Different cascades in the signaling pathway of two vascular endothelial growth factor (VEGF) receptors for the VEGFmediated murine hepatocellular carcinoma development, Oncol. Rep., 2005b, vol. 13, pp. 853–857.

    CAS  PubMed  Google Scholar 

  • Yu, D., Sun, X., Qiu, Y., et al., Identification and clinical significance of mobilized endothelial progenitor cells in tumor vasculogenesis of hepatocellular carcinoma, Clin. Cancer Res., 2007, vol. 13, pp. 3814–3824.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, W., Gouw, A.S., van den Heuvel, M.C., et al., The angiogenic make up of human hepatocellular carcinoma does not favor vascular endothelial growth factor/angiopoietin-driven sprouting neovascularization, Hepatology, 2008, vol. 48, pp. 1517–1527.

    Article  CAS  PubMed  Google Scholar 

  • Zha, S., Yegnasubramanian, V., Nelson, W.G., et al., Cyclooxygenases in cancer: progress and perspective, Cancer Lett., 2004, vol. 215, pp. 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z.L., Liu, Z.S., and Sun, Q., Expression of angiopoietins, Tie2 and vascular endothelial growth factor in angiogenesis and progression of hepatocellular carcinoma, World J. Gastroenterol., 2006, vol. 12, pp. 4241–4245.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu, A.X., Duda, D.G., Sahani, D.V., and Jain, R.K., HCC and angiogenesis: possible targets and future directions, Nat. Rev. Clin. Oncol., 2011, vol. 8, pp. 292–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. N. Tumanova.

Additional information

Original Russian Text © U.N. Tumanova, A.I. Shchegolev, 2015, published in Uspekhi Sovremennoi Biologii, 2015, Vol. 135, No. 2, pp. 164–176.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tumanova, U.N., Shchegolev, A.I. Angiogenesis in hepatocellular carcinoma. Biol Bull Rev 5, 568–578 (2015). https://doi.org/10.1134/S2079086415060080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086415060080

Keywords

Navigation