The Angiogenic Switch in Tumorigenesis

  • Chapter
Tumor Angiogenesis

Abstract

Rapidly growing cancer tissue necessitates an increased blood supply. This is provided mainly by angiogenesis (blood vessel formation from pre-existing vessels) and vasculogenesis (de novo formation of vessels). Vascular co-option and vasculogenic mimicry may also play a role. The transition from a pre-vascular to a vascularized tumor phenotype is called the angiogenic switch. This switch is controlled by a balance between pro-and anti-angiogenic factors, which are secreted by the tumor cells themselves or by cells of the tumor microenvironment (in particular stromal cells and immune cells). The most prominent pro-angiogenic factors are vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). Conversely, proteolytic fragments of the extracellular matrix (ECM) can act as potent angiogenesis inhibitors (e.g., endostatin). Other anti-angiogenic factors include cleaved derivatives of plasminogen (angiostatin) or antithrombin III (C-terminal antithrombin-fragment). The expression of pro-and anti-angiogenic factors by cancer cells is controlled directly by oncogenes, tumor suppressor genes and transcription factors, but also indirectly by environmental factors (such as oxygen or glucose supply). An important aspect of the angiogenic switch is the susceptibility of endothelial cells to pro-angiogenic stimuli. Genetic and epigenetic changes can modulate the response of the endothelial cells to VEGF and FGF and thus influence the angiogenic balance. Transgenic mouse models have been instrumental in elucidating the angiogenic switch and its effect on tumor progression. In patients, the angiogenic switch has been shown to occur in a number of cancer types, most prominently in breast and cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ackah, E, Yu J, Zoellner S, Iwakiri Y, Skurk C, Shibata R, Ouchi N, Easton RM, Galasso G, Birnbaum MJ, Walsh K, Sessa WC (2005) Aktl/protein kinase Balpha is critical for ischémie and VEGF-mediated angiogenesis. J Clin Invest 115(8):2119–2127

    Article  PubMed  CAS  Google Scholar 

  • Aharinejad S, Abraham D, Paulus P, Abri H, Hofmann M, Grossschmidt K, Schafer R, Stanley ER, Hofbauer R (2002) Colony-stimulating factor-1 antisense treatment suppresses growth of human tumor xenografts in mice. Cancer Res 62(18):5317–5324

    PubMed  CAS  Google Scholar 

  • Arbeit JM, Munger K, Howley PM, Hanahan D (1994) Progressive squamous epithelial neoplasia in K14-human papillomavirus type 16 transgenic mice. J Virol 68(7):4358–4368

    PubMed  CAS  Google Scholar 

  • Arbiser JL, Moses MA, Fernandez CA, Ghiso N, Cao Y, Klauber N, Frank D, Brownlee M, Flynn E, Parangi S, Byers HR, Folkman J (1997) Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci USA 94(3):861–866

    Article  PubMed  CAS  Google Scholar 

  • Ausprunk DH, Knighton DR, Folkman J (1975) Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Role of host and preexisting graft blood vessels. Am J Pathol 79(3):597–628

    PubMed  CAS  Google Scholar 

  • Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7(3):211–217

    Article  PubMed  CAS  Google Scholar 

  • Battegay EJ, Rupp J, Iruela-Arispe L, Sage EH, Pech M (1994) PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J Cell Biol 125(4):917–928

    Article  PubMed  CAS  Google Scholar 

  • Beerepoot LV, Shima DT, Kuroki M, Yeo KT, Voest EE (1996) Up-regulation of vascular endothelial growth factor production by iron chelators. Cancer Res 56(16):3747–3751

    PubMed  CAS  Google Scholar 

  • Bein K, Ware JA, Simons M (1998) Myb-dependent regulation of thrombospondin 2 expression. Role of mRNA stability. J Biol Chem 273(33):21423–21429

    Article  PubMed  CAS  Google Scholar 

  • Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, Burdick MD, Strieter RM (2000) CXC chemokines in angiogenesis. J Leukoc Biol 68(1):1–8

    PubMed  CAS  Google Scholar 

  • Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410

    Article  PubMed  CAS  Google Scholar 

  • Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10):737–744

    Article  PubMed  CAS  Google Scholar 

  • Bian J, Sun Y (1997) Transcriptional activation by p53 of the human type IV collagenase (gelatinase A or matrix metal — loproteinase 2) promoter. Mol Cell Biol 17(11):6330–6338

    PubMed  CAS  Google Scholar 

  • Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196(3):254–265

    Article  PubMed  CAS  Google Scholar 

  • Blouw B, Song H, Tihan T, Bosze J, Ferrara N, Gerber HP, Johnson RS, Bergers G (2003) The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 4(2):133–146

    Article  PubMed  CAS  Google Scholar 

  • Brammer RD, Bramhall SR, Eggo MC (2005) Endostatin expression in pancreatic tissue is modulated by elastase. Br J Cancer 92(1):89–93

    Article  PubMed  CAS  Google Scholar 

  • Brammer RD, Bramhall SR, Eggo MC (2005) Endostatin expression in a pancreatic cell line is modulated by a TNF alpha-dependent elastase. Br J Cancer 93(9) 2005:1024–1028

    Article  PubMed  CAS  Google Scholar 

  • Brantley DM, Cheng N, Thompson EJ, Lin Q, Brekken RA, Thorpe PE, Muraoka RS, Cerretti DP, Pozzi A, Jackson D, Lin C, Chen J (2002) Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene 21(46):7011–7026

    Article  PubMed  CAS  Google Scholar 

  • Burri PH, Hlushchuk R, Djonov V (2004) Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn 231(3):474–488

    Article  PubMed  Google Scholar 

  • Cao Y, Xue L (2004) Angiostatin. Semin Thromb Hemost 30(1):83–93

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257

    Article  PubMed  CAS  Google Scholar 

  • Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8(4):299–309

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Herndon ME, Lawler J (2000) The cell biology of thrombospondin-1. Matrix Biol 19(7):597–614

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Somanath PR, Razorenova O, Chen WS, Hay N, Bornstein P, Byzova TV (2005) Aktl regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat Med 11(11):1188–1196

    Article  PubMed  CAS  Google Scholar 

  • Christofori G (1996) The role of fibroblast growth factors in tumour progression and angiogenesis. In: Bicknell R, Lewis CE, Ferrara N (eds) Tumour angiogenesis. Oxford University Press, Oxford, UK

    Google Scholar 

  • Christofori G, Luef S (1997) Novel forms of acidic fibroblast growth factor-1 are constitutively exported by beta tumor cell lines independent from conventional secretion and apoptosis. Angiogenesis l(1):55–70

    Article  Google Scholar 

  • Christofori G, Naik P, Hanahan D (1995) Vascular endothelial growth factor and its receptors, flt-1 and flk-1, are expressed in normal pancreatic islets and throughout islet cell tumorigenesis. Mol Endocrinol 9(12):1760–1770

    Article  PubMed  CAS  Google Scholar 

  • Claudio PP, Stiegler P, Howard CM, Bellan C, Minimo C, Tosi GM, Rak J, Kovatich A, De Fazio P, Micheli P, Caputi M, Leoncini L, Kerbel R, Giordano GG, Giordano A (2001) RB2/pl30 gene-enhanced expression down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in vivo. Cancer Res 61(2):462–468

    PubMed  CAS  Google Scholar 

  • Cockerill GW, Gamble JR, Vadas MA (1995) Angiogenesis: models and modulators. Int Rev Cytol 159:113–160

    Article  PubMed  CAS  Google Scholar 

  • Compagni A, Wilgenbus P, Impagnatiello MA, Cotten M, Christofori G (2000) Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res 60(24):7163–7169

    PubMed  CAS  Google Scholar 

  • Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z, Caughey GH, Hanahan D (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13(11):1382–1397

    PubMed  CAS  Google Scholar 

  • Coussens LM, Tinkle CL, Hanahan D, Werb Z (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103(n3):481–490

    Article  PubMed  CAS  Google Scholar 

  • Coussens LM, Werb Z (2001) Inflammatory cells and cancer: think different! J Exp Med 193(6):F23–6

    Article  PubMed  CAS  Google Scholar 

  • Dameron KM, Volpert OV, Tainsky MA, Bouck N (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265(5178):1582–1584

    Article  PubMed  CAS  Google Scholar 

  • De Palma M, Venneri MA, Galli R, Sergi LS, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8(3):211–226

    Article  CAS  Google Scholar 

  • de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7(5):411–423

    Article  PubMed  CAS  Google Scholar 

  • Dixelius J, Cross MJ, Matsumoto T, Claesson-Welsh L (2003) Endostatin action and intracellular signaling: betacatenin as a potential target? Cancer Lett 196(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Dohn M, Jiang J, Chen X (2001) Receptor tyrosine kinase EphA2 is regulated by p53-family proteins and induces apoptosis. Oncogene 20(45):6503–6515

    Article  PubMed  CAS  Google Scholar 

  • Edelberg JM, Aird WC, Wu W, Rayburn H, Mamuya WS, Mercola M, Rosenberg RD (1998) PDGF mediates cardiac microvascular communication. J Clin Invest 102(4):837–843

    PubMed  CAS  Google Scholar 

  • Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174

    Article  PubMed  CAS  Google Scholar 

  • Elvert G, Kappel A, Heidenreich R, Englmeier U, Lanz S, Acker T, Rauter M, Plate K, Sieweke M, Breier G, Flamme I (2003) Cooperative interaction of hypoxia-inducible factor-2alpha (HIF-2alpha) and Ets-1 in the transcriptional activation of vascular endothelial growth factor receptor-2 (Flk-1). J Biol Chem 278(9):7520–7530

    Article  PubMed  CAS  Google Scholar 

  • Engerman RL, Pfaffenbach D, Davis MD (1967) Cell turnover of capillaries. Lab Invest 17(6):738–743

    PubMed  CAS  Google Scholar 

  • Eubank TD, Galloway M, Montague CM, Waldman WJ, Marsh CB (2003) M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. J Immunol 171(5):2637–2643

    PubMed  CAS  Google Scholar 

  • Fang J, Shing Y, Wiederschain D, Yan L, Butterfield C, Jackson G, Harper J, Tamvakopoulos G, Moses MA (2000) Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci USA 97(8):3884–3889

    Article  PubMed  CAS  Google Scholar 

  • Fernandez A, Udagawa T, Schwesinger C, Beecken W, Achilles-Gerte E, McDonnell T, D’Amato R (2001) Angiogenic potential of prostate carcinoma cells overexpressing bcl-2. J Natl Cancer Inst 93(3):208–213

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82(1):4–6

    Article  PubMed  CAS  Google Scholar 

  • Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267(16):10931–10934

    PubMed  CAS  Google Scholar 

  • Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339(6219):58–61

    Article  PubMed  CAS  Google Scholar 

  • Frater-Schroder M, Risau W, Hallmann R, Gautschi P, Bohlen P (1987) Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci USA 84(15):5277–5281

    Article  PubMed  CAS  Google Scholar 

  • Friesel RE, Maciag T (1995) Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J 9(10):919–925

    PubMed  CAS  Google Scholar 

  • Gill M, Dias S, Hattori K, Rivera ML, Hicklin D, Witte L, Girardi L, Yurt R, Himel H, Rafii S (2001) Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res 88(2):167–174

    PubMed  CAS  Google Scholar 

  • Gimbrone MAJ, Cotran RS, Leapman SB, Folkman J (1974) Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst 52(2):413–427

    PubMed  Google Scholar 

  • Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, Bouck NP (1990) A tumor suppressordependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 87(17):6624–6628

    Article  PubMed  CAS  Google Scholar 

  • Grugel S, Finkenzeller G, Weindel K, Barleon B, Marme D (1995) Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells. J Biol Chem 270(43):25915–25919

    Article  PubMed  CAS  Google Scholar 

  • Guidi AJ, Abu-Jawdeh G, Berse B, Jackman RW, Tognazzi K, Dvorak HF, Brown LF, (1995) Vascular permeability factor (vascular endothelial growth factor) expression and angiogenesis in cervical neoplasia. J Natl Cancer Inst 87(16):1237–1245

    Article  PubMed  CAS  Google Scholar 

  • Hagedorn M, Balke M, Schmidt A, Bloch W, Kurz H, Javerzat S, Rousseau B, Wilting J, Bikfalvi A (2004) VEGF coordinates interaction of pericytes and endothelial cells during vasculogenesis and experimental angiogenesis. Dev Dyn 230(1):23–33

    Article  PubMed  CAS  Google Scholar 

  • Hamada K, Sasaki T, Koni PA, Natsui M, Kishimoto H, Sasaki J, Yajima N, Horie Y, Hasegawa G, Naito M, Miyazaki J, Suda T, Itoh H, Nakao K, Mak TW, Nakano T, Suzuki A (2005) The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev 19(17):2054–2065

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D (1985) Heritable formation of pancreatic betacell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315(6015):115–122

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364

    Article  PubMed  CAS  Google Scholar 

  • Harris AL (2002) Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47

    Article  PubMed  CAS  Google Scholar 

  • Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M, Hicklin DJ, Zhu Z, Witte L, Crystal RG, Moore MA, Rafii S (2001) Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 193(9):1005–1014

    Article  PubMed  CAS  Google Scholar 

  • Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, Hicklin DJ, Zhu Z, Bohlen P, Witte L, Hendrikx J, Hackett NR, Crystal RG, Moore MA, Werb Z, Lyden D, Rafii S (2002) Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 8(8):841–849

    PubMed  CAS  Google Scholar 

  • Heaney AP, Horwitz GA, Wang Z, Singson R, Melmed S (1999) Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nat Med 5(11):1317–1321

    Article  PubMed  CAS  Google Scholar 

  • Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109(5):625–637

    Article  PubMed  CAS  Google Scholar 

  • Hendrix MJ, Seftor EA, Hess AR, Seftor RE (2003) Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3(6):411–421

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H, Shipley JM, Senior RM, Shibuya M (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2(4):289–300

    Article  PubMed  CAS  Google Scholar 

  • Hoar FJ, Lip GY, Belgore F, Stonelake PS (2004) Circulating levels of VEGF-A, VEGF-D and soluble VEGF-A receptor (sFIt-1) in human breast cancer. Int J Biol Markers 19(3):229–235

    Google Scholar 

  • Holmgren L, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1(2):149–153

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Perrotte P, Wood CG, Slaton JW, Sweeney P, Dinney CP (2000) Gene therapy of human bladder cancer with adenovirus-mediated antisense basic fibroblast growth factor. Clin Cancer Res 6(11):4422–4431

    PubMed  CAS  Google Scholar 

  • Inoue M, Hager JH, Ferrara N, Gerber HP, Hanahan D (2002) VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell 1(2):193–202

    Article  PubMed  CAS  Google Scholar 

  • Jiang BH, Zheng JZ, Aoki M, Vogt PK (2000) Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci USA 97(4):1749–1753

    Article  PubMed  CAS  Google Scholar 

  • Kandel J, Bossy-Wetzel E, Radvanyi F, Klagsbrun M, Folkman J, Hanahan D (1991) Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 66(6):1095–1104

    Article  PubMed  CAS  Google Scholar 

  • Kano MR, Morishita Y, Iwata C, Iwasaka S, Watabe T, Ouchi Y, Miyazono K, Miyazawa K (2005) VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling. J Cell Sci 118(Pt16):3759–3768

    Article  PubMed  CAS  Google Scholar 

  • Kendall RL, Thomas KA (1993) Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA 90(22):10705–10709

    Article  PubMed  CAS  Google Scholar 

  • Kendall RL, Wang G, Thomas KA (1996) Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Commun 226(2):324–328

    Article  PubMed  CAS  Google Scholar 

  • Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2(10):727–739

    Article  PubMed  CAS  Google Scholar 

  • Koul D, Shen R, Garyali A, Ke LD, Liu TJ, Yung WK (2002) MMAC/PTEN tumor suppressor gene regulates vascular endothelial growth factor-mediated angiogenesis in prostate cancer. Int J Oncol 21(3):469–475

    PubMed  CAS  Google Scholar 

  • Lacey M, Alpert S, Hanahan D (1986) Bovine papillomavirus genome elicits skin tumours in transgenic mice. Nature 322(6080):609–612

    Article  PubMed  CAS  Google Scholar 

  • LeBuanec H, D’Anna R, Lachgar A, Zagury JF, Bernard J, Ittele D, d’ Alessio P, Hallez S, Giannouli C, Burny A, Bizzini B, Gallo RC, Zagury D (1999) HPV-16 E7 but not E6 oncogenic protein triggers both cellular immunosuppression and angiogenic processes. Biomed Pharmacother 53(9):424–431

    Article  CAS  Google Scholar 

  • Leung SK, Ohh M (2002) Playing Tag with HIF: The VHL Story. J Biomed Biotechnol 2(3):131–135

    Article  PubMed  CAS  Google Scholar 

  • Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colonystimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193(6):727–740

    Article  PubMed  CAS  Google Scholar 

  • Lingen MW, Polverini PJ, Bouck NP (1998) Retinoic acid and interferon alpha act synergistically as antiangiogenic and antitumor agents against human head and neck squamous cell carcinoma. Cancer Res 58(23):5551–5558

    PubMed  CAS  Google Scholar 

  • Lobov IB, Brooks PC, Lang RA (2002) Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci USA 99(17):11205–11210

    Article  PubMed  CAS  Google Scholar 

  • Lopez-OcejoO, Viloria-Petit, Bequet-Romero M, Mukhopadhyay D, Rak J, Kerbel RS (2000) Oncogenes and tumor angiogenesis: the HPV-16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner. Oncogene 19(40):4611–4620

    Article  Google Scholar 

  • Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7(11):1194–1201

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, Qin H, Benveniste EN (2001) Transcriptional suppression of matrix metalloproteinase-9 gene expression by IFN-gamma and IFN-beta: critical role of STAT-1alpha. J Immunol 167(9):5150–5159

    PubMed  CAS  Google Scholar 

  • Maeshima Y, Sudhakar A, Lively JC, Ueki K, Kharbanda S, Kahn CR, Sonenberg N, Hynes RO, Kalluri R (2002) Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295(5552):140–143

    Article  PubMed  CAS  Google Scholar 

  • Magnon C, Galaup A, Mullan B, Rouffiac V, Bouquet C, Bidart JM, Griscelli F, Opolon P, Perricaudet M (2005) Canstatin acts on endothelial and tumor cells via mitochondrial damage initiated through interaction with alphavbeta3 and alphavbeta5 integrins. Cancer Res 65(10):4353–4361

    Article  PubMed  CAS  Google Scholar 

  • McGregor LM, McCune BK, Graff JR, McDowell PR, Romans KE, Yancopoulos GD, Ball DW, Baylin SB, Nelkin BD (1999) Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc Natl Acad Sci USA 96(8):4540–4545

    Article  PubMed  CAS  Google Scholar 

  • Mitsuyasu RT (1991) Interferon alpha in the treatment of AIDS-related Kaposi’s sarcoma. Br J Haematol 79(Suppl l):69–73

    PubMed  Google Scholar 

  • Mukhopadhyay D, Tsiokas L, Sukhatme VP (1995) Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res 55(24):6161–6165

    PubMed  CAS  Google Scholar 

  • Naldini A, Carraro F (2005) Role of inflammatory mediators in angiogenesis. Curr Drug Targets Inflamm Allergy 4(1):3–8

    Article  PubMed  CAS  Google Scholar 

  • Nishimori H, Shiratsuchi T, Urano T, Kimura Y, Kiyono K, Tatsumi K, Yoshida S, Ono M, Kuwano M, Nakamura Y, Tokino T (1997) A novel brain-specific p53-target gene, BAH, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 15(18):2145–2150

    Article  PubMed  CAS  Google Scholar 

  • North S, Moenner M, Bikfalvi A (2005) Recent developments in the regulation of the angiogenic switch by cellular stress factors in tumors. Cancer Lett 218(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Nyberg P, **e L, Kalluri R (2005) Endogenous inhibitors of angiogenesis. Cancer Res 65(10):3967–3979

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79(2):315–328

    Article  PubMed  CAS  Google Scholar 

  • Pal S, Datta K, Mukhopadhyay D (2001) Central role of p53 on regulation of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) expression in mammary carcinoma. Cancer Res 61(18):6952–6957

    PubMed  CAS  Google Scholar 

  • Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Expression of VEGFR-2 and AC 133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95(3):952–958

    PubMed  CAS  Google Scholar 

  • Perrotte P, Matsumoto T, Inoue K, Kuniyasu H, Eve BY, Hicklin DJ, Radinsky R, Dinney CP (1999) Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 5(2):257–265

    PubMed  CAS  Google Scholar 

  • Petit AM, Rak J, Hung MC, Rockwell P, Goldstein N, Fendly B, Kerbel RS (1997) Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 151(6):1523–1530

    PubMed  CAS  Google Scholar 

  • Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78

    Article  PubMed  CAS  Google Scholar 

  • Puxeddu I, Alian A, Piliponsky AM, Ribatti D, Panet A, Levi-Schaffer F (2005) Human peripheral blood eosinophils induce angiogenesis. Int J Biochem Cell Biol 37(3):628–636

    Article  PubMed  CAS  Google Scholar 

  • Rafii S, Lyden D, Benezra R, Hattori K, Heissig B (2002) Vascular and haematopoietic stem cells: novel targets for antiangiogenesis therapy? Nat Rev Cancer 2(11):826–835

    Article  PubMed  CAS  Google Scholar 

  • Rak J, Mitsuhashi Y, Bayko L, Filmus J, Shirasawa S, Sasazuki T, Kerbel RS (1995) Mutant ras oncogenes upregulate VEGF/ VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 55(20):4575–4580

    PubMed  CAS  Google Scholar 

  • Rastinejad F, Polverini PJ, Bouck NP (1989) Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell56(3):345–355

    Article  PubMed  CAS  Google Scholar 

  • Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL, Bedi A (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14(1):34–44

    PubMed  CAS  Google Scholar 

  • Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109(3):337–346

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D, Crivellato E, Roccaro AM, Ria R, Vacca A (2004) Mast cell contribution to angiogenesis related to tumour progression. Clin Exp Allergy 34(11):1660–1664

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D, Vacca A, Dammacco F (2003) New non-angiogenesis dependent pathways for tumour growth. Eur J Cancer 39(13):1835–1841

    Article  PubMed  CAS  Google Scholar 

  • Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16(20):2684–2698

    Article  PubMed  CAS  Google Scholar 

  • Saez E, Rutberg SE, Mueller E, Oppenheim H, Smoluk J, Yuspa SH, Spiegelman BM (1995) c-fos is required for malignant progression of skin tumors. Cell 82(5):721–732

    Article  PubMed  CAS  Google Scholar 

  • Sankar S, Mahooti-Brooks N, Bensen L, McCarthy TL, Centrella M, Madri JA (1996) Modulation of transforming growth factor beta receptor levels on microvascular endothelial cells during in vitro angiogenesis. J Clin Invest 97(6):1436–1446

    PubMed  CAS  Google Scholar 

  • Schafer T, Zentgraf H, Zehe C, Brugger B, Bernhagen J, Nickel W (2004) Unconventional secretion of fibroblast growth factor 2 is mediated by direct translocation across the plasma membrane of mammalian cells. J Biol Chem 279(8):6244–6251

    Article  PubMed  CAS  Google Scholar 

  • Scholz D, Cai WJ, Schaper W (2001) Arteriogenesis, a new concept of vascular adaptation in occlusive disease. Angiogenesis 4(4):247–257

    Article  PubMed  CAS  Google Scholar 

  • Seandel M, Noack-Kunnmann K, Zhu D, Aimes RT, Quigley JP (2001) Growth factor-induced angiogenesis in vivo requires specific cleavage of fibrillar type I collagen. Blood 97(8):2323–2332

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL(2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    Google Scholar 

  • Sheibani N, Frazier WA (1996) Repression of thrombospondin-1 expression, a natural inhibitor of angiogenesis, in polyoma middle T transformed NIH3T3 cells. Cancer Lett 107(1):45–52

    Article  PubMed  CAS  Google Scholar 

  • Shi Q, Le X, Wang B, Abbruzzese JL, **ong Q, He Y, **e K (2001) Regulation of vascular endothelial growth factor expression by acidosis in human cancer cells. Oncogene 20(28):3751–3756

    Article  PubMed  CAS  Google Scholar 

  • Shono T, Ono M, Izumi H, Jimi SI, Matsushima K, Okamoto T, Kohno K, Kuwano M (1996) Involvement of the transcription factor NF-kappaB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol Cell Biol 16(8):4231–4239

    PubMed  CAS  Google Scholar 

  • Shweiki D, Neeman M, Itin A, Keshet E (1995) Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proc Natl Acad Sci USA 92(3):768–772

    Article  PubMed  CAS  Google Scholar 

  • Slack JL, Bornstein P (1994) Transformation by v-src causes transient induction followed by repression of mouse thrombospondin-1. Cell Growth Differ 5(12):1373–1380

    PubMed  CAS  Google Scholar 

  • Smith-McCune KK, Zhu YH, Hanahan D, Arbeit J (1997) Cross-species comparison of angiogenesis during the premalignant stages of squamous carcinogenesis in the human cervix and K14-HPV16 transgenic mice. Cancer Res 57(7):1294–1300

    PubMed  CAS  Google Scholar 

  • Smith-McCune KK, Weidner N (1994) Demonstration and characterization of the angiogenic properties of cervical dysplasia. Cancer Res 54(3):800–804

    PubMed  CAS  Google Scholar 

  • Smith-McCune KK, Zhu Y, Darragh T(1998) Angiogenesis in histologically benign squamous mucosa is a sensitive marker for nearby cervical intraepithelial neoplasia. Angiogenesis 2(2):135–142

    PubMed  CAS  Google Scholar 

  • Solovey A, Lin Y, Browne P, Choong S, Wayner E, Hebbel RP (1997) Circulating activated endothelial cells in sickle cell anemia. N Engl J Med 337(22):1584–1590

    Article  PubMed  CAS  Google Scholar 

  • Stein I, Neeman M, Shweiki D, Itin A, Keshet E (1995) Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol Cell Biol 15(10):5363–5368

    PubMed  CAS  Google Scholar 

  • Stoppler H, Malerczyk C, Block K, Aigner A, Czubayko F (2001) The human papillomavirus (HPV) 16 E6 oncoprotein leads to an increase in gene expression of the angiogenic switch molecule FGF-BP in non-immortalized human keratinocytes. Oncogene 20(50):7430–7436

    Article  PubMed  CAS  Google Scholar 

  • Subbaramaiah K, Altorki N, Chung WJ, Mestre JR, Sampat A, Dannenberg AJ (1999) Inhibition of cyclooxygenase-2 gene expression by p53. J Biol Chem 274(16):10911–10915

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Sun Y, Wenger L, Rutter JL, Brinckerhoff CE, Cheung HS (1999) Human metalloproteinase-1 (collagenase-1) is a tumor suppressor protein p53 target gene. Ann N Y Acad Sci 878:638–641

    Article  PubMed  CAS  Google Scholar 

  • Tait CR, Jones PF (2004) Angiopoietins in tumours: the angiogenic switch. J Pathol 204(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Teitelman G, Alpert S, Hanahan D (1988) Proliferation, senescence, and neoplastic progression of beta cells in hyperplasic pancreatic islets. Cell52(1):97–105

    Article  PubMed  CAS  Google Scholar 

  • Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6(4):460–463

    Article  PubMed  CAS  Google Scholar 

  • Vajkoczy P, Farhadi M, Gaumann A, Heidenreich R, Erber R, Wunder A, Tonn JC, Menger MD, Breier G (2002) Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J Clin Invest 109(6):777–785

    Article  PubMed  CAS  Google Scholar 

  • Verheul HM, Voest EE, Schlingemann RO (2004) Are tumours angiogenesis-dependent? J Pathol 202(1):5–13

    Article  PubMed  CAS  Google Scholar 

  • Vidal A, Zacharoulis S, Guo W, Shaffer D, Giancotti F, Bramley AH, de la Hoz C, Jensen KK, Kato D, MacDonald DD, Knowles J, Yeh N, Frohman LA, Rafii S, Lyden D, Koff A (2005) pl30Rb2 and p27kipl cooperate to control mobilization of angiogenic progenitors from the bone marrow. Proc Natl Acad Sci USA 102(19):6890–6895

    Article  PubMed  CAS  Google Scholar 

  • Volpert OV, Pili R, Sikder HA, Nelius T, Zaichuk T, Morris C, Shiflett CB, Devlin MK, Conant K, Alani RM (2002) Idl regulates angiogenesis through transcriptional repression of thrombospondin-1. Cancer Cell 2(6):473–483

    Article  PubMed  CAS  Google Scholar 

  • Volpert OV, Stellmach V, Bouck N (1995) The modulation of thrombospondin and other naturally occurring inhibitors of angiogenesis during tumor progression. Breast Cancer Res Treat 36(2):119–126

    Article  CAS  Google Scholar 

  • Wahl ML, Kenan DJ, Gonzalez-Gronow M, Pizzo SV (2005) Angiostatin’s molecular mechanism: aspects of specificity and regulation elucidated. J Cell Biochem 96(2):242–261

    Article  PubMed  CAS  Google Scholar 

  • Watnick RS, Cheng YN, Rangarajan A, Ince TA, Weinberg RA (2003) Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 3(3):219–231

    Article  PubMed  CAS  Google Scholar 

  • Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, Meli S, Gasparini G (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84(24):1875–1887

    Article  PubMed  CAS  Google Scholar 

  • Yu JL, Rak JW (2003) Host microenvironment in breast cancer development: inflammatory and immune cells in tumour angiogenesis and arteriogenesis. Breast Cancer Res 5(2):83–88

    Article  PubMed  CAS  Google Scholar 

  • Zabrenetzky V, Harris CC, Steeg PS, Roberts DD (1994) Expression of the extracellular matrix molecule thrombospondin inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. Int J Cancer 59(2):191–195

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Apte SS, Soininen R, Cao R, Baaklini GY, Rauser RW, Wang J, Cao Y, Tryggvason K (2000) Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci USA 97(8):4052–4057

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wicki, A., Christofori, G. (2008). The Angiogenic Switch in Tumorigenesis. In: Marmé, D., Fusenig, N. (eds) Tumor Angiogenesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33177-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33177-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33176-6

  • Online ISBN: 978-3-540-33177-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation