Angiogenesis in Liver Cancer: General Aspects and Cellular Sources of Normal Angiogenesis

  • Reference work entry
  • First Online:
Tumors and Tumor-Like Lesions of the Hepatobiliary Tract
  • 126 Accesses

Abstract

Morphogenesis and biogenesis of new blood vessels comprise two major mechanisms, vasculogenesis and angiogenesis. Vasculogenesis denotes the de novo formation of blood vessels from progenitor cells or stem cells that home to tissues and accomplish the development of the vascular system during ontogenesis. In contrast, angiogenesis is defined as the sprouting of new blood vessels from differentiated endothelial cells present in preexistent vessels. Angiogenesis is the form of blood vessel neoformation occurring in cancers. It involves a sprouting process involving endothelial cell commitment (priming), migration, proliferation and vascular tube morphogenesis (sprouting angiogenesis), and intussusceptive microvascular growth, in which existing vessel lumina are separated and reconstructed. This complex sequence of events is regulated by an array of distinct proangiogenic factors, antiangiogenic factors, and vessel maturation factors. The remodeling of newly formed vessel networks requires tightly controlled apoptotic processes. Similar angiogenic modes, but with involvement of different angiogenic factors, operate in lymphangiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,499.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achen MG, Stacker SA (2006) Tumor lymphangiogenesis and metastatic spread – new players begin to emerge. Int J Cancer 119:1755–1760

    Article  CAS  PubMed  Google Scholar 

  • Adam MG, Berger C, Feldner A, Yang WJ, Wüstehube-Lausch J, Herberich SE et al (2013) Synaptojanin-2 binding protein stabilizes the Notch ligands DLL1 and DLL4 and inhibits sprouting angiogenesis. Circ Res 113:1206–1218

    Article  CAS  PubMed  Google Scholar 

  • Agah A, Kyriakides TR, Lawler J, Bornstein P (2002) The lack of thrombospondin-1 (TSP1) dictates the course of wound healing in double-TSP1/TSP2-null mice. Am J Pathol 161:831–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn JB, Rha SY, Shin SJ, Jeung HC, Kim TS, Zhang X, Park KH, Noh SH, Roh JK, Chung HC et al (2010) Circulating endothelial progenitor cells (EPC) for tumor vasculogenesis in gastric cancer patients. Cancer Lett 288:124–132

    Article  CAS  PubMed  Google Scholar 

  • Aird WC, Edelberg JM, Weiler-Guettler H, Simmons WW, Smith TW, Rosenberg RD (1997) Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment. J Cell Biol 138:1117–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alitalo K, Carmeliet P (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1:219–227

    Article  CAS  PubMed  Google Scholar 

  • Aoi J, Endo M, Kadomatsu T, Miyata K, Ogata A, Horiguchi H, Masuda T, Fukushima S et al (2014) Angiopoietin-like protein 2 accelerates carcinogenesis by activating chronic inflammation and oxidative stress. Mol Cancer Res 12:239–249

    Article  CAS  PubMed  Google Scholar 

  • Arca M, Minicocci I, Maranghi M (2013) The angiopoietin-like protein 3: a hepatokine with expanding role in metabolism. Curr Opin Lipidol 24:313–320

    Article  CAS  PubMed  Google Scholar 

  • Asahara T, Masuda H, Takahashi T et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological conditions. Circ Res 85:221–228

    Article  CAS  PubMed  Google Scholar 

  • Asashima T, Iizasa H, Terasaki T, Hosoya K, Tetsuka K, Ueda M, Obinata M, Nakashima E (2002) Newly developed rat brain pericyte cell line, TR-PCT1, responds to transforming growth factor-beta1 and beta-glycerophosphate. Eur J Cell Biol 81:145–152

    Article  CAS  PubMed  Google Scholar 

  • Aulakh GK, Balachandran Y, Liu L, Singh B (2014) Angiostatin inhibits activation and migration of neutrophils. Cell Tissue Res 355:375–396

    Article  CAS  PubMed  Google Scholar 

  • Baffert F, Le T, Thurston G, McDonald DM (2006) Angiopoietin-1 decreases plasma leakage by reducing number and size of endothelial gaps in venules. Am J Physiol Heart Circ Physiol 290:H107–H118

    Article  CAS  PubMed  Google Scholar 

  • Baixauli F, Lopez-Otin C, Mittelbrunn M (2014) Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol 5:403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bakre MM, Zhu Y, Yin H, Burton DW, Terkeltaub R, Deftos LJ, Varner JA (2002) Parathyroid hormone-related peptide is a naturally occurring protein kinase A-dependent angiogenesis inhibitor. Nat Med 8:995–1003

    Article  CAS  PubMed  Google Scholar 

  • Barton WA, Dalton AC, Seegar TC, Himanen JP, Nikolov DB (2014) Tie2 and Eph receptor tyrosine kinase activation and signaling. Cold Spring Harb Perspect Biol 6(3), pii: a009142

    Google Scholar 

  • Bergé M, Allanic D, Bonnin P, de Montrion C, Richard J, Suc M, Boivin JF, Contrerès JO et al (2011) Neuropilin-1 is upregulated in hepatocellular carcinoma and contributes to tumour growth and vascular remodeling. J Hepatol 55:866–875

    Article  PubMed  CAS  Google Scholar 

  • Birbrair A, Zhang T, Flies DC, Mannava S, Smith T, Wang ZM, Messi ML, Mintz A, Delbono O (2014) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonauer A, Boon RA, Dimmeler S (2010) Vascular microRNAs. Curr Drug Targets 11:943–949

    Article  CAS  PubMed  Google Scholar 

  • Borlongan CV, Glover LE, Taijiri N, Kaneko Y, Freeman TB (2011) The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders. Prog Neurobiol 95:213–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bossard C, Van den Berghe L, Laurell H, Castano C, Cerutti M, Prats AC, Prats H (2004) Antiangiogenic properties of fibstatin, an extracellular FGF-2-binding polypeptide. Cancer Res 64:7507–7512

    Article  CAS  PubMed  Google Scholar 

  • Bratt A, Wilson WJ, Troyanovsky B, Aase K, Kessler R, Van Meir EG, Holmgren L (2002) Angiomotin belongs to a novel protein family with conserved coiled-coil and PDZ binding domains. Gene 298:69–77

    Article  CAS  PubMed  Google Scholar 

  • Bratt A, Birot O, Sinha I, Veitonmäki N, Aase K, Ernkvist M, Holmgren L (2005) Angiomotin regulates endothelial cell-cell junctions and cell motility. J Biol Chem 280:34859–34869

    Article  CAS  PubMed  Google Scholar 

  • Burke M, Choksawangkarn W, Edwards N, Ostrand-Rosenberg S, Fenselau C (2014) Exosomes from myeloid-derived suppressor cells carry biologically active proteins. J Proteome Res 13:836–843

    Article  CAS  PubMed  Google Scholar 

  • Bussolino F, Giraudo E, Serini G (2014) Class 3 semaphorin in angiogenesis and lymphangiogenesis. Chem Immunol Allergy 99:71–88

    Article  CAS  PubMed  Google Scholar 

  • Calvo A, Yokoyama Y, Smith LE, Ali I, Shih S-C, Feldman AL, Libutti SK, Ramakrishnan S, Green JE (2002) Inhibition of the mammary carcinoma angiogenic switch in C3(1)/SV40 transgenic mice by a mutated form of human endostatin. Int J Cancer 101:224–234

    Article  CAS  PubMed  Google Scholar 

  • Cao Y (2009) Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci Signal 2:re1

    Article  PubMed  Google Scholar 

  • Caprara V, Scappa S, Garrafa E, Di Castro V, Rosano L, Bagnato A, Spinella F (2014) Endothelin-1 regulates hypoxia-inducible factor-1α and -2α stability through prolyl hydroxylase domain 2 inhibition in human lymphatic endothelial cells. Life Sci 118:185–190

    Article  CAS  PubMed  Google Scholar 

  • Chan SW, Lim CJ, Guo F, Tan I, Leung T, Hong W (2013) Actin-binding and cell proliferation activities of angiomotin family members are regulated by Hippo pathway-mediated phosphorylation. J Biol Chem 288:37296–37307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang TY, Huang TS, Wang HW, Chang SJ, Lo HH, Chiu YL, Wang YL, Hsiao CD, Tsai CH, Chan CH, You RI et al (2014) miRNome traits analysis on endothelial lineage cells discloses biomarker potential circulating microRNAs which affect progenitor activities. BMC Genomics 15:802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chao TH, Tsai WC, Chen JY, Liu PY, Chung HC, Tseng SY, Kuo CH, Shi GY et al (2014) Soluble thrombomodulin is a paracrine anti-apoptotic factor for vascular endothelial protection. Int J Cardiol 172:340–349

    Article  PubMed  Google Scholar 

  • Chatterjee S, Naik UP (2012) Pericyte-endothelial cell interaction. A survival mechanism for the tumor vasculature. Cell Adhes Migr 6:157–159

    Article  Google Scholar 

  • Chaudhary B, Khaled YS, Ammori BJ, Elkord E (2014) Neuropilin 1: function and therapeutic potential in cancer. Cancer Immunol Immunother 63:81–99

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Lai TC, Jan YH, Lin FM, Wang WC, **ao H, Wang YT, Sun W, Cui X et al (2013) Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis. J Clin Invest 123:1057–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen PY, Qin L, Zhuang ZW, Tellides G, Lax I, Schlessinger J, Simons M (2014a) The docking protein FRS2 is a critical regulator of VEGF receptors signaling. Proc Natl Acad Sci U S A 111:5514–5519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Margariti A, Kelaini S, Cochrane A, Guha ST, Hu Y, Stitt AW, Zhang L, Xu Q (2014b) MicroRNA-199b modulates vascular cell fate during iPS cell differentiation by targeting the notch ligand jagged1 and enhancing VEGF signaling. Stem Cells. doi:10.1002/stem.1930

    Google Scholar 

  • Chen S, Zhao G, Miao H, Tang R, Song Y, Hu Y, Wang Z, Hou Y (2015) MicroRNA-494 inhibits the growth and angiogenesis-regulating potential of mesenchymal stem cells. FEBS Lett 589:710–717

    Article  CAS  PubMed  Google Scholar 

  • Cheung C, Sinha S (2011) Human embryonic stem cell-derived vascular smooth muscle cells in therapeutic neovascularisation. J Mol Cell Cardiol 51:651–664

    Article  CAS  PubMed  Google Scholar 

  • Climent M, Quintavalle M, Miragoli M, Chen J, Condorelli G, Elia L (2015) TGFβ triggers miR-143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization. Circ Res 116:1753–1764

    Article  CAS  PubMed  Google Scholar 

  • Coffelt SB, Tal AO, Scholz A, De Palma M, Patel S, Urbich C, Biswas SK, Murdoch C et al (2010) Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions. Cancer Res 70:5270–5280

    Article  CAS  PubMed  Google Scholar 

  • Coma S, Allard-Ratick M, Akino T, van Meeteren LA, Mammato A, Klagsbrun M (2013) GATA2 and Lmo2 control angiogenesis and lymphangiogenesis via direct transcriptional regulation of neuropilin-2. Angiogenesis 16:939–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coso S, Bovay E, Petrova TV (2014) Pressing the right buttons: signaling in lymphangiogenesis. Blood 123:2614–2624

    Article  CAS  PubMed  Google Scholar 

  • Czirok A (2013) Endothelial cell motility, coordination and pattern formation during vasculogenesis. Wiley Interdiscip Rev Syst Biol Med 5:587–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amore PA (1992) Capillary growth: a two-cell system. Semin Cancer Biol 3:49–56

    PubMed  Google Scholar 

  • Dai X, She P, Chi F, Feng Y, Liu H, ** D, Zhao Y, Guo X, Jiang D, Guan KL, Zhong TP et al (2013) Phosphorylation of angiomotin by Lats1/2kinases inhibits F-actin binding, cell migration, and angiogenesis. J Biol Chem 288:34041–34051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel JM, Sedding DG (2011) Circulating smooth muscle progenitor cells in arterial remodeling. J Mol Cell Cardiol 50:273–279

    Article  CAS  PubMed  Google Scholar 

  • Darland DC, D’Amore PA (2001) TGF beta is required for the formation of capillary-like structures in three-dimensional cocultures of 10T1/2 and endothelial cells. Angiogenesis 4:11–20

    Article  CAS  PubMed  Google Scholar 

  • David Dong ZM, Aplin AC, Nicosia RF (2009) Regulation of angiogenesis by macrophages, dendritic cells, and circulating myelomonocytic cells. Curr Pharm Des 15:365–379

    Article  PubMed  Google Scholar 

  • Davis GE, Stratman AN, Sacharidou A, Koh W (2011) Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. Int Rev Cell Mol Biol 288:101–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Toro R, Prahst C, Mathivet T, Siegfried G, Kaminker JS, Larrivee B, Bréant C et al (2010) Identification and functional analysis of endothelial tip cell-enriched genes. Blood 116:4025–4033

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhanabal M, Volk R, Ramchandran R, Simons M, Sukhatme VP (1999) Cloning, expression, and in vitro activity of human endostatin. Biochem Biophys Res Commun 258:345–352

    Article  CAS  PubMed  Google Scholar 

  • Dhanabal M, LaRochelle WJ, Jeffers M, Herrmann J, Rastelli L, McDonald WF, Chillakuru RA, Yang M, Bo et al (2002) Angioarrestin: an antiangiogenic protein with tumor-inhibiting properties. Cancer Res 62:3834–3841

    CAS  PubMed  Google Scholar 

  • Dhanabal M, Jeffers M, LaRochelle WJ, Lichenstein HS (2005) Angioarrestin: a unique angiopoietin-related protein with anti-angiogenic properties. Biochem Biophys Res Commun 333:308–315

    Article  CAS  PubMed  Google Scholar 

  • Doebele et al. 2010. http://www.ncbi.nlm.nih.gov/pubmed/20299512

  • Donovan MJ, Lin MI, Wiegn P, Ringstedt T, Kraemer R, Hahn R, Wang S, Ibanez CF, Rafii S, Hempstead BL (2000) Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development 127:4531–4540

    CAS  PubMed  Google Scholar 

  • Duff SE, Li C, Garland JM, Kumar S (2003) CD105 is important for angiogenesis: evidence and potential applications. FASEB J 17:984–992

    Article  CAS  PubMed  Google Scholar 

  • Duong T, Koltowska K, Pichol-Thievend C, Le Guen L, Fontaine F, Smith KA, Truong V et al (2014) VEGFD regulates blood vascular development by modulating SOX18 activity. Blood 123:1102–1112

    Article  CAS  PubMed  Google Scholar 

  • Eichmann A, Pardanaud L, Yuan L, Moyon D (2002) Vasculogenesis and the search for the hemangioblast. J Hematother Stem Cell Res 11:207–214

    Article  PubMed  Google Scholar 

  • Enholm et al. 1997. http://www.ncbi.nlm.nih.gov/pubmed/9188862

  • Eriksson A, Cao R, Pawliuk R, Berg SM, Tsang M, Zhou D, Fleet C, Tritsaris K, Dissing S, Leboulch P, Cao Y (2002) Placenta growth factor-1 antagonizes VEGF-induced angiogenesis and tumor growth by the formation of functionally inactive PlGF-1/VEGF heterodimers. Cancer Cell 1:99–108

    Article  CAS  PubMed  Google Scholar 

  • Ernkvist M, Aase K, Ukomadu C, Wohlschlegel J, Blackman R, Veitonmäki N, Dutta A et al (2006) p130-angiomotin associates to actin and controls endothelial cell shape. FEBS J 273:2000–2011

    Article  CAS  PubMed  Google Scholar 

  • Fagiani E, Christofori G (2013) Angiopoietins in angiogenesis. Cancer Lett 328:18–26

    Article  CAS  PubMed  Google Scholar 

  • Fan GC (2014) Hypoxic exosomes promote angiogenesis. Blood 124:3669–3670

    Article  CAS  PubMed  Google Scholar 

  • Feldman AL, Restifo NP, Alexander HR, Bartlett DL, Hwu P, Seth P, Libutti SK (2000) Antiangiogenic gene therapy of cancer utilizing a recombinant adenovirus to elevate systemic endostatin levels in mice. Cancer Res 60:1503–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forget MA, Voorhees JL, Cole SL, Dakhlallah D, Patterson IL, Gross AC, Moldovan L et al (2014) Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer. PLoS One 9:e98623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Form DM, Auerbach R (1983) PGE2 and angiogenesis. Prog Soc Exp Biol Med 172:214–218

    Article  CAS  Google Scholar 

  • Fraisl P, Mazzone M, Schmidt T, Carmellet P (2009) Regulation of angiogenesis by oxygen and metabolism. Dev Cell 16:167–179

    Article  CAS  PubMed  Google Scholar 

  • Francis N, Farinas I, Brennan C, Rivas-Plata K, Backus C, Reichardt L, Landis S (1999) NT-3, like NGF, is required for survival of sympathetic neurons, but not their precursors. Dev Biol 210:411–427

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Tang H, Huang Y, Song N, Luo Y (2009) Unraveling the mysteries of endostatin. IUBMB Life 61:613–626

    Article  CAS  PubMed  Google Scholar 

  • Gagné V, Moreau J, Plourde M, Lapointe M, Lord M, Gagnon E, Fernandes MJ (2009) Human angiomotin-like 1 associates with an angiomotin protein complex through its coiled-coil domain and induces the remodeling of the actin cytoskeleton. Cell Motil Cytoskeleton 66:754–768

    Article  PubMed  CAS  Google Scholar 

  • Gao Z-H, McAlister V, Williams G (2001) Repopulation of liver endothelium by bone marrow-derived cells. Lancet 357:932–933

    Article  CAS  PubMed  Google Scholar 

  • Gaur P, Bielenberg DR, Samuel S, Bose D, Zhou Y, Gray MJ, Dallas NA, Fan F et al (2009) Role of class 3 semaphorins and their receptors in tumor growth and angiogenesis. Clin Cancer Res 15:6763–6770

    Article  CAS  PubMed  Google Scholar 

  • Goerke et al. 2015. http://www.ncbi.nlm.nih.gov/pubmed/25473802

  • Gong Y, Yang X, He Q, Gower L, Prudovsky I, Vary CP, Brooks PC, Friesel RE (2013) Sprouty4 regulates endothelial cell migration via modulating integrin α3 stability through c-Src. Angiogenesis 16:861–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guescini M, Genedani S, Stocchi V, Agnati LF (2010) Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm 117:1–4

    Article  CAS  PubMed  Google Scholar 

  • Guichet PO, Guelfi S, Teigell M, Hoppe L, Bakalara N, Bauchet L, Duffau H, Lamszus K, Rothhut B, Hugnot JP (2015) Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells. Stem Cells 33:21–34

    Article  CAS  PubMed  Google Scholar 

  • Gunsilius E, Duba H-C, Petzer AL, Kalher CM, Grunewald K, Stockhammer G, Gabl C, Dirnhofer S, Calusen J, Gastl G (2000) Evidence from a leukaemia model for maintenance of vascular endothelium by bone marrow-derived endothelial cells. Lancet 355:1688–1691

    Article  CAS  PubMed  Google Scholar 

  • Guttmann-Raviv N, Shraga-Heled N, Varshavsky A, Guimaraes-Sternberg C, Kessler O et al (2007) Sempahorin-3A and semphorin-3F work together to repel endothelial cells and to inhibit their survival by induction of apoptosis. J Biol Chem 282:26294–26305

    Article  CAS  PubMed  Google Scholar 

  • Haas TL, Stitelman D, Davis SJ, Apte SS, Madri JA (1999) Egr-1 mediates extracellular matrix-driven transcription of membrane type 1 matrix metalloproteinase in endothelium. J Biol Chem 274:22679–22685

    Article  CAS  PubMed  Google Scholar 

  • Haas TL, Milkiewicz M, Davis SJ, Zhou AL, Egginton S, Brown MD, Madri JA, Hudlicka O (2000) Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle. Am J Physiol Heart Circ Physiol 279:H1540–H1547

    CAS  PubMed  Google Scholar 

  • Hakulinen J, Sankkila L, Sugiyama N, Lehri K, Keski-Oja J (2008) Secretion of active membrane type 1 matrix metalloproteinase (MMP-14) into extracellular space in microvesicular exosomes. J Cell Biochem 105:1211–1218

    Article  CAS  PubMed  Google Scholar 

  • Hanai J-I, Gloy J, Karumanchi SA, Kale S, Tang J, Hu G, Chan B, Ramchandran R, Jha V, Sukhatme VP, Sokol S (2002) Endostatin is a potential inhibitor of Wnt signaling. J Cell Biol 158:529–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi I, Amano H, Yoshida S, Kamata K, Kamata M, Inukai M, Fujita T, Kumagai Y, Furudate S, Majima M (2002) Suppressed angiogenesis in kininogen-deficiencies. Lab Invest 82:871–880

    Article  CAS  PubMed  Google Scholar 

  • He Y, Kozaki K, Karpanen T, Koshikawa K, Yla-Herttuala S, Takahashi T, Alitalo K (2002) Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 94:819–825

    Article  CAS  PubMed  Google Scholar 

  • Hegner B, Weber M, Dragun D, Schulze-Lohoff E (2005) Differential regulation of smooth muscle markers in human bone marrow-derived mesenchymal stem cells. J Hypertens 23:1191–1202

    Article  CAS  PubMed  Google Scholar 

  • Hegner B, Lange M, Kusch A, Essin K, Sezer O, Schulze-Lohoff E, Luft FC, Gollasch M, Dragun D (2009) mTOR regulates vascular smooth muscle cell differentiation from human bone marrow-derived mesenchymal progenitors. Arterioscler Thromb Vasc Biol 29:232–238

    Article  CAS  PubMed  Google Scholar 

  • Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crysta RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirschi KK, Goodell MA (2002) Hematopoietic, vascular and cardiac fates of bone marrow-derived stem cells. Gene Ther 9:648–652

    Article  CAS  PubMed  Google Scholar 

  • Hirschi KK, Majesky MW (2004) Smooth muscle stem cells. Anat Rec A: Discov Mol Cell Evol Biol 276:22–33

    Article  Google Scholar 

  • Hirschi KK, Rohovsky SA, D’Amore PA (1998) PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1 /2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141:805–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hon W-C, Wilson MI, Harlos K, Claridge TDW, Schofield CJ, Pugh CW, Maxwell PH, Ratcliffe PJ, Stuart DI, Jones Y (2002) Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 417:975–978

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Srivastava K, Wieland M, Runge A, Mogler C, Besemfelder E, Terhardt D, Vogel MJ et al (2014) Endothelial cell-derived angioppietin-2 controls liver regeneration as a spatiotemporal rheostat. Science 343:416–419

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO (2002) A reevaluation of integrins as regulators of angiogenesis. Nat Med 8:918–921

    Article  CAS  PubMed  Google Scholar 

  • Inagaki J, Takahashi K, Ogawa H, Asano K, Faruk Hatipoglu O, Cilek MZ, Obika M et al (2014) ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor. Exp Cell Res 323:263–275

    Article  CAS  PubMed  Google Scholar 

  • Ismail N, Wang Y, Dakhlallah D, Moldovan L, Agarwal K, Batte K, Shah P, Wisler J, Eubank TD, Tridandapani S et al (2013) Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood 121:984–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwata H, Manabe I, Fujiu K, Yamamoto T, Takeda N, Eguchi K, Furuya A, Kuro-o M, Sata M, Nagai R (2010) Bone marrow-derived cells contribute to vascular inflammation but do not differentiate into smooth muscle cell lineages. Circulation 122:2048–2057

    Article  CAS  PubMed  Google Scholar 

  • Jaipersad AS, Lip GY, Silverman S, Shantsila E (2014) The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 63:1–11

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson L, Bentley K, Gerhardt H (2009) VEGFRs and Notch: a dynamic collaboration in vascular patterning. Biochem Soc Trans 37:1233–1236

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B, Aspalter IM, Rosewell I et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12:943–953

    Article  CAS  PubMed  Google Scholar 

  • Janes PW, Nievergall E, Lackmann M (2012) Concepts and consequences of Eph receptor clustering. Semin Cell Dev Biol 23:43–50

    Article  CAS  PubMed  Google Scholar 

  • Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, Swartz M, Fukumura D, Jain RK, Alitalo K (1997) Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276:1423–1425

    Article  CAS  PubMed  Google Scholar 

  • Jeltsch M, Jha SK, Tvorogov D, Anisimov A, Leppänen VM, Holopainen T, Kivelä R et al (2014) CCBE1 enhances lymphangiogenesis via a disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. Circulation 129:1962–1971

    Article  CAS  PubMed  Google Scholar 

  • Ji RC (2006) Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: new insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev 25:677–694

    Article  PubMed  Google Scholar 

  • Joukov V, Sorsa T, Kumar V, Jeltsch M, Claesson-Welsh L, Cao Y, Saksela O, Kalkkinen N, Alitalo K (1997) Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J 16:3898–3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jussila L, Alitalo K (2002) Vascular growth factors and lymphangiogenesis. Physiol Rev 82:673–700

    Article  CAS  PubMed  Google Scholar 

  • Kampmeier OF (ed) (1969) Evolution and comparative morphology of the lymphatic system. Charles C. Thomas, Springfield

    Google Scholar 

  • Karpanen T, Alitalo K (2008) Molecular biology and pathology of lymphangiogenesis. Annu Rev Mech Dis 3:367–397

    Article  CAS  Google Scholar 

  • Karumanchi SA, Jha V, Ramchandran R, Karihaloo A, Tsiokas L, Chan B, Dhanabal M, Hanai JI, Ventkataraman G, Shriver Z et al (2001) Cell surface glypicans are low-affinity endostatin receptors. Mol Cell 7:811–822

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki T, Kitsukawa T, Bekku Y, Matsuda Y, Sanbo M, Yagi T, Fujisawa H (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126:4895–4902

    CAS  PubMed  Google Scholar 

  • Kennedy E, Mooney CJ, Hakimjavadi R, Fitzpatrick E, Guha S, Collins LE, Loscher CE, Morrow D, Redmond EM et al (2014) Adult vascular smooth muscle cells in culture express neural stem cell markers typical of resident multipotent vascular stem cells. Cell Tissue Res 358:203–216

    Article  CAS  PubMed  Google Scholar 

  • Kessler O, Shraga-Heled N, Lange T, Gutmann-Raviv N, Sabo E, Baruch L, Machluf M, Neufeld G (2004) Semaphorin-3F is an inhibitor of tumor angiogenesis. Cancer Res 64:1008–1015

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Bennit HF, Wall NR (2015) The emerging role of exosomes in survivin secretion. Histol Histopathol 30:43–50

    CAS  PubMed  Google Scholar 

  • Kidoya H, Takakura N (2012) Biology of the apelin-APJ axis in vascular formation. J Biochem 152:125–131

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Houge M, Brown M, Davis ME, Yoon YS (2014) Cultured human bone marrow-derived CD31(+) cells are effective for cardiac and vascular repair through enhanced angiogenic, adhesion, and anti-inflammatory effects. J Am Coll Cardiol 64:1681–1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein D, Hohn HP, Kleff V, Tilki D, Ergün S (2010) Vascular wall-resident stem cells. Histol Histopathol 25:681–689

    PubMed  Google Scholar 

  • Klein D, Weisshardt P, Kleff V, Jastrow H, Jakob HG, Ergün S (2011) Vascular wall-resident CD44+ multipotent stem cell give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS One 6:e20540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein D, Meissner N, Kleff V, Jastrow H, Yamaguchi M, Ergün S, Jendrossek V (2014) Nestin(+) tissue-resident multipotent stem cells contribute to tumor progression by differentiating into pericytes and smooth muscle cells resulting in blood vessel remodeling. Front Oncol 4:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L (2011) Signal transduction by vascular endothelial growth factor receptors. Biochem J 437:169–183

    Article  CAS  PubMed  Google Scholar 

  • Kostopoulos CG, Spioglou SG, Varakis JN, Apostolakis E, Papadaki HH (2014) Adiponectin/T-cadherin and apelin/APJ expression in human arteries and periadventitial fat: implication of local adipokine signaling in atherosclerosis ? Cardiovasc Pathol 23:131–138

    Article  CAS  PubMed  Google Scholar 

  • Kubo H, Cao R, Brakenhielm E, Makinen T, Cao Y, Alitalo K (2002) Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci U S A 99:8868–8873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S (2007) Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 101:59–68

    Article  CAS  PubMed  Google Scholar 

  • Kukk E, Lymboussaki A, Taira S, Kaipainen A, Jeltsch M, Joukov V, Alitalo K (1996) VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 122:3829–3837

    CAS  PubMed  Google Scholar 

  • Kumarswamy R, Volkmann I, Jazbutyte V, Dangwal S, Park DH, Thum T (2012) Transforming growth factor-beta-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21. Arterioscler Thromb Vasc Biol 32:361–369

    Article  CAS  PubMed  Google Scholar 

  • Kunduzova O, Alet N, Delesque-Touchard N, Millet L, Catsan-Laurell I, Muller C, Dray C, Schaeffer P, Herault JP et al (2008) Apelin/APJ signaling system: a potential link between adipose tissue and endothelial angiogenic processes. FASEB J 22:4146–4153

    Article  CAS  PubMed  Google Scholar 

  • Kurz H, Lauer D, Papoutsi M, Christ B, Wilting J (2002) Pericytes in experimental MDA-MB231 tumor angiogenesis. Histochem Cell Biol 117:527–534

    Article  CAS  PubMed  Google Scholar 

  • Kurzen H, Manns S, Dandekar G, Schmidt T, Pratzel S, Kraling BM (2002) Tightening of endothelial cell contacts: a physiologic response to cocultures with smooth-muscle-like 10T1 / 2 cells. J Invest Dermatol 119:143–153

    Article  CAS  PubMed  Google Scholar 

  • Lagaaij E, Cramer-Knijnenburg G, van Kemenade F, van Es L, Bruijn J, van Krieken J (2001) Endothelial cell chimerism after renal transplantation and vascular rejection. Lancet 357:33–37

    Article  CAS  PubMed  Google Scholar 

  • Lawler J (2000) The functions of thrombospondin-1 and -2. Curr Opin Cell Biol 12:634–640

    Article  CAS  PubMed  Google Scholar 

  • Lawler J (2002) Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med 6:1–12

    Article  CAS  PubMed  Google Scholar 

  • Lawler PR, Lawler J (2012) Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb Perpsect Med 2:a006627

    Google Scholar 

  • LeCouter J, Kowalski J, Foster J, Hass P, Zhang Z, Dillard -Telm L, Frantz G, Rangell L et al (2001) Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412:877–884

    Article  CAS  PubMed  Google Scholar 

  • LeCouter J, Lin R, Ferrara N (2002) Endocrine gland-derived VEGF and the emerging hypothesis of organ-specific regulation of angiogenesis. Nat Med 8:913–917

    Article  CAS  PubMed  Google Scholar 

  • Li J, Huang NF, Zou J, Laurent TJ, Lee JC, Okogbaa J, Cooke JP, Ding S (2013a) Conversion of human fibroblasts to functional endothelial cells by defined factors. Arterioscler Thromb Vasc Biol 33:1366–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhang Y, Liu Y, Dai X, Li W, Cai X, Yin Y, Wang Q, Xue Y, Wang C, Li D, Hou D et al (2013b) Microvesicle-mediated transfer of microRNA-150 from monocytes to endothelial cells promotes angiogenesis. J Biol Chem 288:23586–23596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Li L, **e F, Zhang Z, Guo Y, Tang G, Lv D, Lu Q, Chen L, Li J (2013c) Jagged-1/Notch3 transduction pathway is involved in apelin-13-induced vascular smooth muscle cells proliferation. Acta Biochim Biophys Sin (Shanghai) 45:875–881

    Article  CAS  Google Scholar 

  • Lin Y, Weisdorf D, Solovey A, Hebbel R (2000) Origin of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105:71–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin F, Wang N, Zhang TC (2012) The role of endothelial-mesenchymal transition in development and pathological process. IUBMB Life 64:717–723

    Article  CAS  PubMed  Google Scholar 

  • Lindahl P, Hellstrom M, Kalen M, Betsholtz C (1998) Endothelial-perivascular cell signaling in vascular development: lessons from knockout mice. Curr Opin Lipidol 9:407–411

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Hu T, He L, Huang X, Tian X, Zhang H, He L, Pu W, Zhang L, Sun H, Fang J, Yu Y, Duan S, Hu C, Hui L et al (2015) Genetic targeting of sprouting angiogenesis using Apln-CreER. Nat Commun 6:6020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loffredo S, Staiano RI, Granata F, Genovese A, Marone G (2014) Immune cells as a source and target of angiogenic and lymphangiogenic factors. Chem Immunol Allergy 99:15–36

    Article  CAS  PubMed  Google Scholar 

  • Lohela M, Bry M, Tammela T, Alitalo K (2009) VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 21:154–165

    Article  CAS  PubMed  Google Scholar 

  • Lymboussaki A, Olofsson B, Eriksson U, Alitalo K (1999) Vascular endothelial growth factor (VEGF) and VEGF-C show overlap** binding sites in embryonic endothelia and distinct sites in differentiated adult endothelia. Circ Res 85:992–999

    Article  CAS  PubMed  Google Scholar 

  • Madanecki P, Kapoor N, Bebok Z, Ochocka R, Collawan JF, Bartoszewski R (2013) Regulation of angiogenesis by hypoxia: the role of microRNA. Cell Mol Biol Lett 18:47–57

    Article  CAS  PubMed  Google Scholar 

  • Maertens L, Erpicum C, Detry B, Blacher S, Lenoir B, Carnet O, Péqueux C, Cataldo D, Lecomte J, Paupert J et al (2014) Bone marrow-derived mesenchymal stem cells drive lymphangiogenesis. PLoS One 9:e106976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Majima M, Hayashi I, Muramatsu M, Katada J, Yamashina S, Katori M (2000) Cyclo-oxygenase-2 enhances basic fibroblast growth factor-induced angiogenesis through induction of vascular endothelial growth factor in rat sponge implants. Br J Pharmacol 130:641–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansfield PJ, Suchard SJ (1993) Thrombospondin promotes both chemotaxis and haptotaxis in neutrophil-like Hl-60 cells. J Immunol 150:1959–1970

    CAS  PubMed  Google Scholar 

  • Mansfield PJ, Suchard SJ (1994) Thrombospondin promotes chemotaxis and haptotaxis of human peripheral blood monocytes. J Immunol 153:4219–4229

    CAS  PubMed  Google Scholar 

  • Marchand M, Anderson EK, Phadnis SM, Longaker MT, Cooke JP, Chen B, Reijo Pera RA (2014) Concurrent generation of functional smooth muscle cells and endothelial cells via a vascular progenitor. Stem Cells Transl Med 3:91–97

    Article  CAS  PubMed  Google Scholar 

  • Marchetti S, Gimond C, Il** K, Bourcier C, Alitalo K, Pouyssegur J, Pages G (2002) Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo. J Cell Sci 115:2075–2085

    CAS  PubMed  Google Scholar 

  • Martin FA, Murphy RP, Cummins PM (2013) Thrombomodulin and the vascular endothelium: insights into functional, regulatory, and therapeutic aspects. Am J Physiol Heart Circ Physiol 304:H1585–H1597

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Ema M (2014) Roles of VEGF-A signalling in development, regeneration, and tumours. J Biochem 156:1–10

    Article  CAS  PubMed  Google Scholar 

  • Medici D, Kalluri R (2012) Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin Cancer Biol 22:379–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menegazzo L, Albiero M, Millioni R, Tolin S, Arrigoni G, Poncina N, Tessari P, Avogaro A et al (2013) Circulating myeloid calcifying cells have antiangiogenic activity via thrombospondin-1 overexpression. FASEB J 27:4355–4365

    Article  CAS  PubMed  Google Scholar 

  • Miyajima A, Kosaka T, Asano T, Asano T, Seta K, Kawai T, Hayakawa M (2002) Angiotensin II type 1 antagonist prevents pulmonary metastasis of murine renal cancer by inhibiting tumor angiogenesis. Cancer Res 62:4176–4179

    CAS  PubMed  Google Scholar 

  • Mocharla P, Briand S, Giannotti G, Dörries C, Jakob P, Paneni F, Lüscher T, Landmesser U (2013) AngiomiR-126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood 121:226–236

    Article  CAS  PubMed  Google Scholar 

  • Modgil A, Guo L, O’Rourke ST, Sun C (2013) Apelin-13 inhibits large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle cells via a PI3-kinase dependent mechanism. PLoS One 8:e83051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moleirinho S, Guarrant W, Kissil JL (2014) The angiomotins – from discovery to function. FEBS Lett 588:2693–2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyon D, Pardanaud L, Yuan L, Breant C, Eichmann A (2001) Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development 128:3359–3370

    CAS  PubMed  Google Scholar 

  • Mukouama Y-S, Shin D, Britsch S, Taniguchi M, Anderson DJ (2002) Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109:693–705

    Article  Google Scholar 

  • Murakami M, Sakurai T (2012) Role of fibroblast growth factor signaling in vascular formation and maintenance: orchestrating signaling networks as an integrated system. Wiley Interdiscip Rev Syst Biol Med 4:615–629

    Article  CAS  PubMed  Google Scholar 

  • Murray IR, West CC, Hardy WR, James AW, Park TS, Nguyen A, Tawonsawatruk T, Lazzari L, Soo C et al (2014) Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci 71:1353–1374

    Article  CAS  PubMed  Google Scholar 

  • Navarro A, Marin S, Riol N, Carbonell-Uberos F, Miñana MD (2014) Human adipose tissue-resident monocytes exhibit an endothelial-like phenotype and display angiogenic properties. Stem Cell Res Ther 5:50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neill T, Torres A, Buraschi S, Iozzo RV (2013) Decorin has an appetite for endothelial cell autophagy. Autophagy 9:10

    Article  Google Scholar 

  • Nguyen LL, D’Amore PA (2001) Cellular interactions in vascular growth and differentiation. Int Rev Cytol 204:1–48

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa SI (2001) A complex linkage in the developmental pathway of endothelial and hematopoietic cells. Curr Opin Biol 13:673–678

    Article  CAS  Google Scholar 

  • O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285

    Article  PubMed  Google Scholar 

  • Oh SJ, Jeltsch MM, Birkenhager R, McCarthy JE, Weich HA, Christ B, Alitalo K, Wilting J (1997) VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 188:96–109

    Article  CAS  PubMed  Google Scholar 

  • Oka T, Schmitt AP, Sudol M (2012) Opposing roles of angiomotin-like-1 and zona occludens-2 on pro-apoptotic function of YAP. Oncogene 31:128–134

    Article  CAS  PubMed  Google Scholar 

  • Okamoto H, Yayama K, Shibata H, Nagaoka M, Takano M (1998) Kininogen expression by rat vascular smooth muscle cells: stimulation by lipopolysaccharide and angiotensin II. Biochem Biophys Acta 1404:329–337

    Article  CAS  PubMed  Google Scholar 

  • Olaso E, Salado C, Egilegor E, Gutierrez V, Santisteban A, Sancho-Bru P, Friedman SL, Vidal-Vanaclocha F (2003) Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology 37:674–685

    Article  CAS  PubMed  Google Scholar 

  • Orlova VV, van den Hil FE, Petrus-Reurer S, Drabsch Y, Ten Dijke P, Mummery CL (2014) Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nat Protoc 9:1514–1531

    Article  CAS  PubMed  Google Scholar 

  • Owen JL, Mohamadzadeh M (2013) Macrophages and chemokines as mediators of angiogenesis. Front Physiol 4:159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pacini S, Petrini I (2014) Are MSCs angiogenic cells ? New insights on human nestin-positive bone marrow-derived multipotent cells. Front Cell Dev Biol 2:20

    PubMed  PubMed Central  Google Scholar 

  • Pang R, Poon RTP (2006) Angiogenesis and antiangiogenic therapy in hepatocellular carcinoma. Cancer Lett 242:151–167

    Article  CAS  PubMed  Google Scholar 

  • Papoutsi M, Tomarev SI, Eichmann A, Prols F, Christ B, Wilting J (2001) Endogenous origin of the lymphatics in the avian chorioallantoic membrane. Dev Dyn 222:238–251

    Article  CAS  PubMed  Google Scholar 

  • Paramasivam M, Sarkeshik A, Ytes JR, Fernandes MJ, McCollum D (2011) Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor. Mol Biol Cell 22:3725–3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JE, Chen HH, Winer J, Houck KA, Ferrara N (1994) Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 269:25646–25654

    CAS  PubMed  Google Scholar 

  • Partanen TA, Paavonen K (2001) Lymphatic versus blood vascular endothelial growth factors and receptors in humans. Microsc Res Technol 55:108–121

    Article  CAS  Google Scholar 

  • Pepper MS (1997a) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8:21–43

    Article  CAS  PubMed  Google Scholar 

  • Pepper MS (1997b) Manipulating angiogenesis: from basic science to the bedside. Arterioscler Thromb Vasc Biol 17:605–619

    Article  CAS  PubMed  Google Scholar 

  • Piera-Velazquez S, Jimenez SA (2012) Molecular mechanisms of endothelial to mesenchymal cell transition (EndoMT) in experimentally fibrotic diseases. Fibrogenesis Tissue Repair 5(Suppl 1):S7

    PubMed  PubMed Central  Google Scholar 

  • Pipp F, Heil M, Issbrücker K, Ziegelhoeffer T, Martin S, van den Heuvel J, Weich H et al (2003) VEGFR-1-selective VEGF homologue PIGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ Res 92:378–385

    Article  CAS  PubMed  Google Scholar 

  • Poulsom R, Alison MR, Forbes SJ, Wright NA (2002) Adult stem cell plasticity. J Pathol 197:441–456

    Article  PubMed  Google Scholar 

  • Prats AC, Van den Berghe L, Rayssac A, Ainaoui N, Morfoisse F, Pujol F, Legonidec S et al (2013) CXCL4L1-fibstatin cooperation inhibits tumor angiogenesis, lymphangiogenesis and metastasis. Microvasc Res 89:25–33

    Article  CAS  PubMed  Google Scholar 

  • Qin Q, Qian J, Ge L, Shen L, Jia J, ** J, Ge J (2014) Effect and mechanism of thrombospondin-1 on the angiogenesis potential in human endothelial progenitor cells: an in vitro study. PLoS One 9:e88213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quirici N, Soligo D, Caneva L, Servida F, Bossolasco P, Deliliers GL (2001) Differentiation and expansion of endothelial cells from human bone marrow CD133 (+) cells. Br J Haematol 115:186–194

    Article  CAS  PubMed  Google Scholar 

  • Radziwon-Balicka A, Ramer C, Moncada de la Rosa C, Zielnik-Drabik B, Jurasz P (2013) Angiostatin inhibits endothelial MMP-2 and MMP-14 expression: a hypoxia specific mechanism in action. Vasc Pharmacol 58:280–291

    Article  CAS  Google Scholar 

  • Rafii S, Meeus S, Dias S, Hattori K, Heissig B, Shmelkov S, Rafii D, Lyden D (2002a) Contribution of marrow-derived progenitors to vascular and cardiac regeneration. Semin Cell Dev Biol 13:61–67

    Article  CAS  PubMed  Google Scholar 

  • Rafii S, Heissig B, Hattori K (2002b) Efficient mobilization and recruitment of marrow-derived endothelial and hematopoietic stem cells by adenoviral vectors expressing angiogenic factors. Gene Ther 9:631–641

    Article  CAS  PubMed  Google Scholar 

  • Resovi A, Pinessi D, Chiorino G, Taraboletti G (2014) Current understanding of the thrombospondin-1 interactome. Matrix Biol 37:83–91

    Article  CAS  PubMed  Google Scholar 

  • Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109:337–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro MF, Zhu H, Millard RW, Fan GC (2013) Exosomes function in pro-and anti-angiogenesis. Curr Angiogenes 2:54–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson MR, Robbins EP, Vemula S, Critser PJ, Whittington C, Voytik-Harbin SL et al (2014) Angiopoietin-like protein 2 regulates endothelial colony forming cell vasculogenesis. Angiogenesis 17:675–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieder F, Kessler SP, West GA, Bhilocha S, de la Motte C, Sadler TM, Gopalan B et al (2011) Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. Am J Pathol 179:2660–2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ristimaki A, Narko K, Enholm B, Joukov V, Alitalo K (1998) Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem 273:8413–8418

    Article  CAS  PubMed  Google Scholar 

  • Rosano L, Spinella F, Bagnato A (2013) Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 13:637–651

    Article  CAS  PubMed  Google Scholar 

  • Rose JA, Erzurum S, Asosingh K (2015) Biology and flow cytometry of proangiogenic hematopoietic progenitors cells. Cytometry A 87:5–19

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti E, Rajotte D (2000) An address system in the vasculature of normal tissues and tumors. Annu Rev Immunol 18:813–827

    Article  CAS  PubMed  Google Scholar 

  • Russell JS, Brown JM (2013) The irradiated tumor microenvironment: role of tumor-associated macrophages in vascular recovery. Front Physiol 4:157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sabin FR (1904) On the development of the superficial lymphatics in the skin of the pig. Am J Anat 9:43–91

    Article  Google Scholar 

  • Sacharidou A, Stratman AN, Davis GE (2012) Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices. Cells Tissues Organs 195:122–143

    Article  CAS  PubMed  Google Scholar 

  • Saed GM, Carretero OA, MacDonald RJ, Scicli AG (1990) Kallikrein messenger RNA in rat arteries and veins. Circ Res 67:510–516

    Article  CAS  PubMed  Google Scholar 

  • Sahoo S, Klychko E, Thorne T, Misener S, Schultz KM, Millay M, Ito A, Liu T, Kamide C, Agrawal H, Perlman H et al (2011) Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res 109:724–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai A, Doçi CL, Gutkind JS (2012) Semaphorin signaling in angiogenesis, lymphangiogenesis and cancer. Cell Res 22:23–32

    Article  CAS  PubMed  Google Scholar 

  • Sanders AJ, Ye L, Mason MD, Jiang WG (2010) The impact of EPLINα (epithelial protein lost in neoplasm) on endothelial cells, angiogenesis and tumorigenesis. Angiogenesis 13:317–326

    Article  CAS  PubMed  Google Scholar 

  • Santulli G (2014) Angiopoietin-like proteins: a comprehensive look. Front Endocrinol (Lausanne) 5:4

    Google Scholar 

  • Sato Y, Sonoda H (2007) The vasohibin family: a negative regulatory system of angiogenesis genetically programmed in endothelial cells. Arterioscler Thromb Vasc Biol 27:37–41

    Article  CAS  PubMed  Google Scholar 

  • Scarisbrick IA, Jones EG, Isackson PJ (1993) Coexpression of mRNAs for NGF, BDNF, and NT-3 in the cardiovascular system of the pre-and postnatal rat. J Neurosci 13:875–893

    CAS  PubMed  Google Scholar 

  • Schneider M, Othman-Hassan K, Christ B, Wilting J (1999) Lymphangioblasts in the avian wing bud. Dev Dyn 216:311–319

    Article  CAS  PubMed  Google Scholar 

  • Schwachtgen JL, Houston P, Campbell C, Sukhatme V, Braddock M (1998) Fluid shear stress activation of egr-1 transcription in cultured human endothelial and epithelial cells is mediated via the extracellular signal-related kinase1/2 mitogen-activated protein kinase pathway. J Clin Invest 101:2540–2549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seok SH, Heo JI, Hwang JH, Na YR, Yun JH, Lee EH, Park JW, Cho CH (2013) Angiopoiein-1 elicits pro-inflammatory responses in monocytes and differentiating macrophages. Mol Cells 35:550–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sertie AL, Sossi V, Camargo AA, Zatz M, Brahe C, Passos-Bueno MR (2000) Collagen XVIII, containing an endogenous inhibitor of angiogenesis and tumor growth, plays a critical role in the maintenance of retinal structure and in neural tube closure (Knobloch syndrome). Hum Mol Genet 9:2051–2058

    Article  CAS  PubMed  Google Scholar 

  • Sharghi-Namini S, Tan E, Ong LL, Ge R, Asada HH (2014) DII4-containing exosomes induce capillary sprout retraction in a 3D microenvironment. Sci Rep 4:4031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi H, Huang Y, Zhou H, Song X, Yuan S, Fu Y, Luo Y (2007) Nucleolin is a receptor that mediates antiangiogenic and antitumor activity of endostatin. Blood 110:2899–2906

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Watanabe K, Yamashita H, Abe M, Yoshimtasu H, Ohta H, Sonoda H, Sato Y (2005) Gene regulation of a novel angiogenesis inhibitor, vasohibin, in endothelial cells. Biochem Biophys Res Commun 327:700–706

    Article  CAS  PubMed  Google Scholar 

  • Sinclair R (1972) Origin of endothelium in human renal allografts. Br Med J 4:15–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H, Tahir TA, Alawo DO, Issa E, Brindle NP (2011) Molecular control of angiopoietin signalling. Biochem Soc Trans 39:1592–1596

    Article  CAS  PubMed  Google Scholar 

  • Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K (2002) Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2:573–583

    Article  CAS  PubMed  Google Scholar 

  • Stalmans I, Ng YS, Rohan R, Fruttiger M, Bouche A, Yuce A, Fujisawa H, Hermans B et al (2002) Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest 109:327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staudt ND, Jo M, Hu J, Bristow JM, Pizzo DP, Gaultier A, VandenBerg SR, Gonias SL (2013) Myeloid cell receptor LRP1/CD91 regulates monocyte recruitment and angiogenesis in tumors. Cancer Res 73:3902–3912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stratman AN, Saunders WB, Sacharidou A, Koh W, Fisher KE, Zawieja DC, Davis MJ et al (2009) Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood 114:237–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundberg C, Kowanetz M, Brown LF, Detmar M, Dvorak HF (2002) Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab Invest 82:387–401

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Kalka C, Masuda H et al (1999) Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    Article  CAS  PubMed  Google Scholar 

  • Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140:460–476

    Article  CAS  PubMed  Google Scholar 

  • Tan KW, Chong SZ, Wong FH, Evrard M, Tan SM, Keeble J, Kemeny DM, Ng LG et al (2013) Neutrophils contribute to inflammatory lymphangiogenesis by increasing VEGF-A bioavailability and secreting VEGF-D. Blood 122:3666–3677

    Article  CAS  PubMed  Google Scholar 

  • Tan YZ, Wang HJ, Zhang MH, Quan Z, Li T, He QZ (2014) CD34+ VEGFR-3+ progenitor cells have a potential to differentiate towards lymphatic endothelial cells. J Cell Mol Med 18:422–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Z, Wang A, Yuan F, Yan Z, Liu B, Chu JS, Helms JA, Li S (2012) Differentiation of multipotent vascular stem cells contributes to vascular diseases. Nat Commun 3:875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas M, Augustin HG (2009) The role of the angiopoietins in vascular morphogenesis. Angiogenesis 12:125–137

    Article  CAS  PubMed  Google Scholar 

  • Tomita S, Li R, Weisel R, Mickle DA, Kim EJ, Sakai T, Jia ZQ (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100:II 247–II 256

    Article  CAS  Google Scholar 

  • Urbich C, Kuehbacher A, Dimmeler S (2008) Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 79:581–588

    Article  CAS  PubMed  Google Scholar 

  • Urbich C, Kaluza D, Frömel T, Knau A, Bennewitz K, Boon RA, Bonauer A, Doebele C, Boeckel JN, Hergenreider E et al (2012) MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood 119:1607–1616

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela DM, Griffiths JA, Rojas J, Aldrich TH, Jones PF, Zhou H, McClain J, Copeland NG, Gilbert DJ, Jenkins NA et al (1999) Angiopoietins 3 and 4: diverging gene counterparts in mice and humans. Proc Natl Acad Sci U S A 96:1904–1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Balkom BW, de Jong OG, Smits M, Brummelman J, den Ouden K, de Bree PM et al (2013) Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121:3997–4006

    Article  PubMed  CAS  Google Scholar 

  • van Laake LW, van den Driesche S, Post S, Feijen A, Jansen MA, Driessens MH et al (2006) Endoglin has a crucial role in blood cell-mediated vascular repair. Circulation 114:2288–2297

    Article  PubMed  CAS  Google Scholar 

  • Van Solingen C, Seghers L, Bijkerk R, Duijs JM, Roeten MK, van Oeveren-Rietdijk AM, Baelde HJ, Monge M, Vos JB et al (2009) Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med 13:1577–1585

    Article  PubMed  CAS  Google Scholar 

  • Varshavsky A, Kessler O, Abramovitch S, Kigel B, Zaffryar S, Akiri G, Neufeld G (2008) Semaphorin-3B is an angiogenesis inhibitor that is inactivated by furin-like pro-protein convertases. Cancer Res 68:6922–6931

    Article  CAS  PubMed  Google Scholar 

  • Veikkola T, Jussila L, Makinen T, Karpanen T, Jeltsch M, Petrova TV, Kubo H, Thurston G et al (2001) Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 20:1223–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner N, Michiels JF, Schedl A, Wagner KD (2008) The Wilms’ tumour suppressor WT1 is involved in endothelial cell proliferation and migration: expression in tumour vessels in vivo. Oncogene 27:3662–3672

    Article  CAS  PubMed  Google Scholar 

  • Wagner KD, Cherfils-Vicini J, Hosen N, Hohenstein P, Gilson E, Hastie ND, Michiels JF, Wagner N (2014) The Wilms’ tumour suppressor Wt1 is a major regulator of tumour angiogenesis and progression. Nat Commun 5:5852

    Article  CAS  PubMed  Google Scholar 

  • Wang HU, Chen Z, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sasakibara A, Adams S et al (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465:483–486

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li Z, Xu P, Huang L, Tong J, Huang H, Meng A (2011) Angiomotin-like2 (amotl2) is required for migration and proliferation of endothelial cells during angiogenesis. J Biol Chem 286:41095–41104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Luo Y, Duan H, **ng S, Zhang J, Lu D, Feng J, Yang D, Song L, Yan X (2013) MicroRNA 329 suppresses angiogenesis by targeting CD146. Mol Cell Biol 33:3689–3699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Hasegawa Y, Yamashita H, Shimizu K, Ding Y, Abe M, Ohta H, Imagawa K et al (2004) Vasohibin as an as an endothelium-derived negative feedback regulator of angiogenesis. J Clin Invest 114:898–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch-Reardon KM, Ehsan SM, Wang K, Wu N, Newman AC, Romero-Lopez M, Fong AH et al (2014) Angiogenic sprouting is regulated by endothelial cell expression of Slug. J Cell Sci 127:2017–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98:769–778

    Article  CAS  PubMed  Google Scholar 

  • Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG, Oliver G (2002) An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21:1505–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams G, Alvarez C (1969) Host repopulation of the endothelium in allografts of kidneys and aorta. Surg Forum 20:293–294

    CAS  PubMed  Google Scholar 

  • Wilson CM, Naves T, Vincent F, Melloni B, Bonnaud F, Lalloué F, Jauberteau MO (2014) Sortilin mediates the release and transfer of exosomes in concert with two tyrosine kinase receptors. J Cell Sci 127:3983–3997

    Article  CAS  PubMed  Google Scholar 

  • Wilting J, Papoutsi M, Schneider M, Christ B (2000a) The lymphatic endothelium of the avian wing is of somitic origin. Dev Dyn 217:271–278

    Article  CAS  PubMed  Google Scholar 

  • Wilting J, Schneider M, Papoutsi M, Alitalo K, Christ B (2000b) An avian model for studies of embryonic lymphangiogenesis. Lymphology 33:81–94

    CAS  PubMed  Google Scholar 

  • Witte MH, Bernas MJ, Martin CP, Witte CL (2001) Lymphangiogenesis and lymphangiodysplasia: from molecular to clinical lymphology. Microsc Res Technol 55:122–145

    Article  CAS  Google Scholar 

  • Wu X, Liu N (2010) The role of Ang/Tie signaling in lymphangiogenesis. Lymphology 43:59–72

    CAS  PubMed  Google Scholar 

  • **ng Y, Hou J, Guo T, Zheng S, Zhou C, Huang H, Chen Y, Sun K, Zhong T, Wang J, Li H, Wang T (2014) MicroRNA-378 promotes mesenchymal stem cells survival and vascularization under hypoxic-ischemic condition in vitro. Stem Cell Res Ther 5:130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu QB (2005) Endothelial progenitor cells in angiogenesis. Sheng Li Xue Bao 57:1–6

    PubMed  Google Scholar 

  • Xu Y, Liu YJ, Yu Q (2004) Angiopoietin-3 is tethered on the cell surface via heparan sulfate proteoglycans. J Biol Chem 279:41179–41188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi S, Yamaguchi M, Yatsuyanagi E, Yun S-S, Nakajima N, Madri JA, Sumpio BE (2002) Cyclic strain stimulates early growth response gene product 1-mediated expression of membrane type 1 matrix metalloproteinase in endothelium. Lab Invest 82:949–956

    Article  CAS  PubMed  Google Scholar 

  • Yao P, Eswarappa SM, Fox PL (2015) Translational control mechanisms in angiogenesis and vascular biology. Curr Atheroscler Rep 17:506

    Article  PubMed  CAS  Google Scholar 

  • Yi C, Troutman S, Fera D, Stemmer-Rachamimov A, Avila JL, Christian N, Persson NL et al (2011) A tight junction-associated Merlin-angiomotin complex mediates Merlin’s regulation of mitogenic signaling and tumor suppressive functions. Cancer Cell 19:527–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama Y, Green JE, Sukhatme VP, Ramakrishnan S (2000) Effect of endostatin on spontaneous tumorigenesis of mammary adenocarcinoma in a transgenic mouse model. Cancer Res 60:4362–4365

    CAS  PubMed  Google Scholar 

  • Yonekura H, Sakurai S, Liu X, Migita H, Wang H, Yamagishi S, Nomura M, Abedin MJ, Unoki H, Yamamoto Y, Yamamoto H (1999) Placenta growth factor and vascular endothelial growth factor B and C expression in microvascular endothelial cells and pericytes. Implication in autocrine and paracrine regulation of angiogenesis. J Biol Chem 274:35172–35178

    Article  CAS  PubMed  Google Scholar 

  • Young PP, Hofling AA, Sands MS (2002) VEGF increases engraftment of bone marrow-derived endothelial progenitor cells (EPCs) into vasculature of newborn murine recipients. Proc Natl Acad Sci U S A 99:11951–11956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu XH, Tang ZB, Liu LJ, Qian H, Tang SL, Zhang DW, Tian GP, Tang CK (2014a) Apelin and its receptor APJ in cardiovascular diseases. Clin Chim Acta 428:1–8

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhang X, Kuzontkoski PM, Jiang S, Zhu W, Li DY, Groopman JE (2014b) Slit2N and Robo4 regulate lymphangiogenesis through the VEGF-C/VEGFR-3 pathway. Cell Commun Sign 12:25

    Article  CAS  Google Scholar 

  • Zachary I (2014) Neuropilins: role in signalling, angiogenesis and disease. Chem Immunol Allergy 99:37–70

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Nurmi H, Appak S, Sabine A, Bovay E, Korhonen EA, Orsenigo F, Lohela M et al (2014a) Angiopoietin 2 regulates the transformation and integrity of lymphatic endothelial cell junctions. Genes Dev 28:1592–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng W, Aspelunf A, Alitalo K (2014b) Lymphangiogenic factors, mechanisms, and applications. J Clin Invest 124:878–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zordan P, Rigamonti E, Freudenberg K, Conti V, Azzoni E, Rovere-Querini P, Brunelli S (2014) Macrophages commit postnatal endothelium-derived progenitors to angiogenesis and restrict endothelial to mesenchymal transition during muscle regeneration. Cell Death Dis 5:e1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Zimmermann .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Zimmermann, A. (2017). Angiogenesis in Liver Cancer: General Aspects and Cellular Sources of Normal Angiogenesis. In: Tumors and Tumor-Like Lesions of the Hepatobiliary Tract. Springer, Cham. https://doi.org/10.1007/978-3-319-26956-6_187

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26956-6_187

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26954-2

  • Online ISBN: 978-3-319-26956-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics

Navigation