Log in

Contribution of the Photonic Component to the Ionization of the Atmosphere by Earth Crust Radionuclides and Radioactive Emanations

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

We investigate the contribution of gamma radiation of natural radionuclides constituting the Earth crust, radioactive emanations, and their decay product in the ground to the rate of production of ion pairs in the atmosphere against the background of ionization of the atmosphere by radioactive gases exhaled to the atmosphere from the ground and propagating together with their short-lived daughter products. The radon flux density to the atmosphere is estimated by three methods: the reservoir method, the integration of altitude profiles of volume activity of radon, based on gamma spectroscopic observations and the diffusion model. The distribution of the gamma radiation dose from the earth radionuclides in the soil and the atmosphere is calculated using Gleant4 software. The propagation of the radon isotopes and their decay products in the atmosphere is calculated simulated using large eddy simulation supplemented with kinematic simulation of subgrid flux of a passive scalar. It is shown that depending on the specific activity of radionuclides in the ground, the soil parameters, and the turbulent regime of the atmosphere, the total contribution of gamma radiation to the ion pair production rate in the atmospheric boundary layer is approximately from 1 to 20% and increases upon a decrease in the penetrability of the upper ground layer for radioactive emanations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Allison, J., Amako, K., Apostolakis, J., et al., Recent developments in Geant4, Nucl. Instrum. Methods Phys. Res., Sect. A, 2016, vol. 835, pp. 186–225. https://doi.org/10.1016/j.nima.2016.06.125

    Article  Google Scholar 

  2. Anisimov, S.V., Aphinogenov, K.V., and Guriev, A.V., Hardware platform for balloon aeroelectrical observations, Nauchn. Priborostr., 2017a, vol. 27, no. 1, pp. 24–28. https://doi.org/10.18358/np-27-1-i2428

    Article  Google Scholar 

  3. Anisimov, S.V., Galichenko, S.V., Aphinogenov, K.V., Makrushin, A.P., and Shikhova, N.M., Radon volumetric activity and ion production in the undisturbed lower atmosphere: Ground-based observations and numerical modeling, Izv., Phys. Solid Earth, 2017b, vol. 53, no. 1, pp. 147–161. https://doi.org/10.1134/S1069351317010037

    Article  Google Scholar 

  4. Anisimov, S.V., Galichenko, S.V., Prokhorchuk, A.A., and Aphinogenov, K.V., Mid-latitude convective boundary-layer electricity: A study by large-eddy simulation, Atmos. Res., 2020, vol. 244, p. 105035. https://doi.org/10.1016/j.atmosres.2020.105035

    Article  Google Scholar 

  5. Barbosa, S.M., Miranda, P., and Azevedo, E.B., Short-term variability of gamma radiation at the ARM Eastern North Atlantic facility (Azores), J. Environ. Radioact., 2017, vol. 172, pp. 218–231. https://doi.org/10.1016/j.jenvrad.2017.03.027

    Article  Google Scholar 

  6. Barbosa, S.M., Huisman, J.A., and Azevedo, E.B., Meteorological and soil surface effects in gamma radiation time series—Implications for assessment of earthquake precursors, J. Environ. Radioact., 2018, vol. 195, pp. 72–78. https://doi.org/10.1016/j.jenvrad.2018.09.022

    Article  Google Scholar 

  7. Bernard, D., A 5D, polarized, Bethe–Heitler event generator for γ → e + e conversion, Nucl. Instrum. Methods Phys. Res., Sect. A, 2018, vol. 899, pp. 85–93. https://doi.org/10.1016/j.nima.2018.05.021

    Article  Google Scholar 

  8. Binks, W., Energy per ion pair, Acta Radiologica, 1954, vols. os–42, no. 117, pp. 85–104. https://doi.org/10.1177/0284185154042S11709

  9. Burnett, J.L., Croudace, I.W., and Warwick, P.E., Short-lived variations in the background gamma-radiation dose, J. Radiol. Prot., 2010, vol. 30, pp. 525–533. https://doi.org/10.1088/0952-4746/30/3/007

    Article  Google Scholar 

  10. Dueñas, C., Fernández, M.C., Carretero, J., Liger, E., and Pérez, M., Release of 222Rn from some soils, Ann. Geophysicae, 1997, vol. 15, pp. 124–133. https://doi.org/10.1007/s00585-997-0124-0

    Article  Google Scholar 

  11. Grasty, R.L., Radon emanation and soil moisture effects on airborne gamma-ray measurements, Geophysics, 1997, vol. 62, no. 5, pp. 1379–1385. https://doi.org/10.1190/1.1444242

    Article  Google Scholar 

  12. Greenfield, M.B., Domondon, A.T., Okamoto, N., and Watanabe, I., Variation in γ-ray count rates as a monitor of precipitation rates, radon concentrations, and tectonic activity, J. Appl. Phys, 2002, vol. 91, no. 3, pp. 1628–1633. https://doi.org/10.1063/1.1426248

    Article  Google Scholar 

  13. Griffiths, A.D., Zahorowski, W., Element, A., and Werczynsky, S., A map of radon flux at the Australian land surface, Atmos. Chem. Phys., 2010, vol. 10, pp. 8969–8982. https://doi.org/10.5194/acp-10-8969-2010

    Article  Google Scholar 

  14. Guedalia, D., Allet, C., Fontan, J., and Druilhet, A., Lead-212, radon and vertical mixing in the lower Atmosphere (100-2000) m, Tellus, 1973, vol. 25, no. 4, pp. 381–385. https://doi.org/10.1111/j.2153-3490.1973.tb00621.x

    Article  Google Scholar 

  15. Hassan, N.M., Hosoda, M., Ishikawa, T., Sorimachi, A., Sahoo, S.K., Tokonami, S., and Fukushi, M., Radon migration process and its influence factors, Rev., Jpn. J. Health Phys., 2009, vol. 44, no. 2, pp. 218–231. https://doi.org/10.5453/jhps.44.218

    Article  Google Scholar 

  16. Hosoda, M., Sorimachi, A., Yasuoka, Y., Ishikawa, T., Sahoo, S.K., Furukawa, M., Hassan, N.M., Tokonami, S., and Uchida, S., Simultaneous measurements of radon and thoron exhalation rates and comparison with values calculated by UNSCEAR equation, J. Radiat. Res., 2009, vol. 50, no. 4, pp. 333–343. https://doi.org/10.1269/jrr.08121

    Article  Google Scholar 

  17. Inomata, Y., Chiba, M., Igarashi, Y., Aoyama, V., and Hirose, K., Seasonal and spatial variations of enhanced gamma ray dose rates derived from 222Rn progeny during precipitation in Japan, Atmos. Envir, 2007, vol. 41, no. 37, pp. 8043–8057. https://doi.org/10.1016/j.atmosenv.2007.06.046

    Article  Google Scholar 

  18. Kardos, R., Gregorič, A., Jónás, J., Vaupotič, J., Kovács, T., and Ishimori, Y., Dependence of radon emanation of soil on lithology, J. Radioanal. Nucl. Chem., 2015, vol. 304, pp. 1321–1327. https://doi.org/10.1007/s10967-015-3954-3

    Article  Google Scholar 

  19. Laakso, L., Petäjä, T., Lehtinen, K.E.J., Kulmala, M., Paatero, J., Horrak, U., Tammet, H., and Joutsensaari, J., Ion production rate in a boreal forest based on ion, particle and radiation measurements, Atmos. Chem. Phys., 2004, vol. 4, no. 7, pp. 1933–1943. https://doi.org/10.5194/acp-4-1933-2004

    Article  Google Scholar 

  20. Maronga, B., Banzhaf, S. et al., Overview of the PALM model system 6.0, Geosci. Model. Dev., 2020, vol. 13, no. 3, pp. 1335–1372. https://doi.org/10.5194/gmd-13-1335-2020

  21. Melintescu, A., Chambers, S.D., Crawford, J., Williams, A.G., Zorila, B., and Galeriu, D., Radon-222 related influence on ambient gamma dose, J. Environ. Radioact., 2018, vol. 189, pp. 67–78. https://doi.org/10.1016/j.jenvrad.2018.03.012

    Article  Google Scholar 

  22. Ongori, J.N., Lindsay, R., Newman, R.T., and Maleka, P.P., Determining the radon exhalation rate from a gold mine tailings dump by measuring the gamma radiation, J. Environ. Radioact., 2015, vol. 140, pp. 16–24. https://doi.org/10.1016/j.jenvrad.2014.10.012

    Article  Google Scholar 

  23. Pearson, J.E. and Jones, G.E., Soil concentrations of “emanating radium-226” and the emanation of radon-222 from soils and plants, Tellus, 1966, vol. 18, nos. 2–3, pp. 655–662. https://doi.org/10.3402/tellusa.v18i2-3.9202

    Article  Google Scholar 

  24. Porstendörfer, J., Properties and behavior of radon and thoron and their decay products in the air, J. Aerosol Sci., 1994, vol. 25, no. 2, pp. 219–263. https://doi.org/10.1016/0021-8502(94)90077-9

    Article  Google Scholar 

  25. Prasad, G., Ishikawa, T., Hosoda, M., Sorimachi, A., Janik, M., Sahoo, S., Tokonami, S., and Uchida, S., Estimation of radon diffusion coefficients in soil using an updated experimental system, Rev. Sci. Instrum., 2012, vol. 83, p. 93503. https://doi.org/10.1063/1.4752221

    Article  Google Scholar 

  26. Rizzo, A., Antonacci, G., Borra, E., Cardellini, F., Ciciani, L., Sperandio, L., and Vilardi, I., Environmental gamma dose rate monitoring and radon correlations: evidence and potential applications, Environments, 2022, vol. 9, no. 6, p. 66. https://doi.org/10.3390/environments9060066

    Article  Google Scholar 

  27. Ryzhakova, N.K., A new method for estimating the coefficients of diffusion and emanation of radon in the soil, J. Environ. Radioact., 2014, vol. 135, pp. 63–66. https://doi.org/10.1016/j.jenvrad.2014.04.002

    Article  Google Scholar 

  28. Singh, B., Singh, S., and Virk, H.S., Radon diffusion studies in air, gravel, sand, soil and water, Nucl. Tracks Radiat. Meas., 1993, vol. 22, nos. 1–4, pp. 455–458. https://doi.org/10.1016/0969-8078(93)90107-F

    Article  Google Scholar 

  29. Smirnov, V.V., Ionizatsiya v troposfere (Ionization in Troposphere), St. Petersburg: 1992.

    Google Scholar 

  30. Sun, K., Guo, Q., and Cheng, J., The effect of some soil characteristics on soil radon concentration and radon exhalation rate, J. Nucl. Sci. Tech., 2004, vol. 41, no. 11, pp. 1113–1117. https://doi.org/10.1080/18811248.2004.9726337

    Article  Google Scholar 

  31. Tchorz-Trzeciakiewicz, D.E. and Rysiukiewicz, M., Ambient gamma dose rate as an indicator of geogenic radon potential, Sci. Total Environ., 2021, vol. 755, p. 142771. https://doi.org/10.1016/j.scitotenv.2020.142771

    Article  Google Scholar 

  32. Tchorz-Trzeciakiewicz, D.E. and Solecki, A.T., Variations of radon concentration in the atmosphere. Gamma dose rate, Atmos. Environ., 2018, vol. 174, pp. 54–65. https://doi.org/10.1016/j.atmosenv.2017.11.033

    Article  Google Scholar 

  33. Waggy, S.B., Biringen, S., and Sullivan, P.P., Direct numerical simulation of top-down and bottom-up diffusion in the convective boundary layer, J. Fluid Mech., 2013, vol. 724, pp. 581–606. https://doi.org/10.1017/jfm.2013.130

    Article  Google Scholar 

  34. Wilkening, M.H., Clements, W.E., and Stanley, D., Radon 222 flux measurements in widely separated regions, The Natural Radiation Environment II, Adams, J.A.S., Ed., Houston, Texas: Rice Univ., 1972, pp. 717–730.

    Google Scholar 

  35. Williams, A., Zahorowski, W., Chambers, S., Griffiths, A., Hacker, J.M., Element, A., and Werczynsky, S., The vertical distribution of radon in clear and cloudy daytime terrestrial boundary layers, J. Atmos. Sci., 2011, vol. 68, pp. 155–174. https://doi.org/10.1175/2010JAS3576.1

    Article  Google Scholar 

  36. Yakovlev, G.A. and Yakovleva, V.S., Features of seasonal dynamics of radon isotopes in surface atmosphere, Vestn. KRAUNTs. Fiz.-Mat. Nauki, 2020, vol. 31, no. 2, pp. 129–138. https://doi.org/10.26117/2079-6641-2020-31-2-129-138

    Article  Google Scholar 

  37. Yakovlev, G.A., Kobzev, A.A., Smirnov, S.V., Belyaeva, I.V., Arshinov, M.Yu., and Yakovleva, V.S., Synchronous monitoring of γ, β-background and atmospheric precipitations in geophysical observatories of IMCES SB RAS and BEC IAO SB RAS, Vestn. KRAUNTs. Fiz.-Mat. Nauki, 2020, vol. 32, no. 3, pp. 165–179. https://doi.org/10.26117/2079-6641-2020-32-3-165-179

    Article  Google Scholar 

  38. Yakovleva, V.S., Modeling the effect of the state and variability of the atmosphere and lithosphere on the density of radon and thoron fluxes from the Earth’s surface, Izv. Tomsk. Politekh. Univ., 2010, vol. 317, no. 2, pp. 162–166.

    Google Scholar 

  39. Yakovleva, V.S., Poberezhnikov, A.D., Yakovlev, G.A., Kobzev, A.A., Smirnov, S.V., and Arshinov, M.Yu., Analysis of gamma-radiation background changes during periods of atmospheric precipitation, At. Energy, 2021, vol. 131, no. 1, pp. 50–55. https://doi.org/10.1007/s10512-022-00836-w

    Article  Google Scholar 

  40. Yakovleva, V., Yakovlev, G., Parovik, R., Smirnov, S., and Kobzev, A., Geant4 simulation of precipitated activity-to-γ-dose rate conversion factors for radon and thoron decay products, Mathematics, 2022, vol. 10, no. 3, p. 293. https://doi.org/10.3390/math10030293

    Article  Google Scholar 

  41. Ye, Y., Zhang, Y., Dai, X., and Ding, D., A universal laboratory method for determining physical parameters of radon migration in dry granulated porous media, J. Environ. Radioact., 2017, vol. 177, pp. 135–141. https://doi.org/10.1016/j.jenvrad.2017.06.012

    Article  Google Scholar 

  42. Zhang, K., Feichter, J., Kazil, J., Wan, H., Zhuo, W., Griffiths, A.D., Sartorius, H., Zahorowski, W., Ramonet, M., Schmidt, M., Yver, C., Neubert, R.E.M., and Brunke, E.-G., Radon activity in the lower troposphere and its impact on ionization rate: A global estimate using different radon emissions, Atmos. Chem. Phys., 2011, vol. 11, no. 15, pp. 7817–7838. https://doi.org/10.5194/acp-11-7817-2011

    Article  Google Scholar 

  43. Zukau, V.V., Yakovleva, V.S., Karataev, V.D., and Nagorskii, P.M., Ionization of near-earth atmosphere by radiation of soil radionuclides, Izv. Tomsk. Politekh. Univ., 2010, vol. 317, no. 2, pp. 171–175.

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 22-17-00053) and State assignment no. FMWU-2022-0025 for the Borok Geophysical Observatory, Institute of Physics of the Earth, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Galichenko.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimov, S.V., Galichenko, S.V., Klimanova, E.V. et al. Contribution of the Photonic Component to the Ionization of the Atmosphere by Earth Crust Radionuclides and Radioactive Emanations. Izv., Phys. Solid Earth 59, 1044–1055 (2023). https://doi.org/10.1134/S1069351323060022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351323060022

Keywords:

Navigation