Log in

Influence of Atmospheric Radon Transport on a Radon Flux from the Surface

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

Radon-222 is inert radioactive gas with a half-life period of 3.8 days, it is a decay product of radium-226. Being escaped from minerals and underground waters into pore space of rocks and soil, it is transported to the surface by diffusion and advection and gone to the atmosphere. When modeling processes of atmosphere radon transport one sets value of radon flux from the surface, depending on contents of radium-226 in rocks and conditions of radon transport in soil, especially on soil porosity and humidity. The impact of radon turbulent transport in the atmospheric boundary layer (ABL) on radon flux density from the surface is estimated in this paper. It is shown that both for stationary state and for typical diurnal variations of the radon volumetric activity (VA) in the ABL, the correction to the radon flux density caused by its turbulent transport in the ABL is negligible (less than 1%) and doesn’t exceed measurement errors. Thus, when calculating radon VA in the ABL it is really possible to set an average value of the radon flux density on the surface as a boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Zoughool, M. and Krewski, D., Health effects of radon: a review of the literature, Int. J. Radiat. Biol., 2009, vol. 85, pp. 57–69.

    Article  Google Scholar 

  • Anisimov, S.V., Galichenko, S.V., and Aphinogenov, K.V., The radon transport and the atmospheric boundary layer electric state formation, Fundam. Prikl. Gidrofiz., 2016, vol. 9, no. 4, pp. 1–9.

    Google Scholar 

  • Anisimov, S.V., Galichenko, S.V., Afinogenov, K.V., Makrushin, A.P., and Shikhova, N.M., Radon volumetric activity and ion production in the undisturbed lower atmosphere: ground-based observations and numerical modeling, Izv., Phys. Solid Earth, 2017, no. 1, pp. 147–161.

    Article  Google Scholar 

  • Cicerone, R.D., Ebel, J.E., and Beitton, J., A systematic compilation of earthquake precursors, Tectonophysics, 2009, no. 476, pp. 371–396.

    Article  Google Scholar 

  • Dmitriev, E.M., The influence of atmospheric radon transport on radon flux from the Earth’s surface, Materialy nauchnoprakticheskoi konferentsii “Sredneshirotnye geofizicheskie observatorskie nablyudeniya” (Proc. Research and Practice Conference “Midlatitude Geophysical Observatory Measurements”), Borok, October 16–19, 2017, Borok Geophysical Observatory–IFZ RAN–Yaroslavl: Filigran’, 2017a, pp. 18–19.

    Google Scholar 

  • Dmitriev, E.M., The influence of radon transport in the lower atmosphere on its flux from the Earth’s surface, Materialy 3-i Vserossiiskoi konferentsii “Global’naya elektricheskaya tsep” (Proc. 3rd All-Russia Conference “Global Electric Circuit”), Borok, September 25–29, 2017, Borok Geophysical Observatory–IFZ RAN–Yaroslavl: Filigran’, 2017b, pp. 43–44.

    Google Scholar 

  • Foken, T., Micrometeorology, Berlin: Springer, 2008.

    Google Scholar 

  • Hirao, S., Yamazawa, H., and Moriizumi, J., Estimation of global 222Rn flux density from the Earth’s surface, Jpn. J. Health Phys, 2010, vol. 45, pp. 161–171.

    Article  Google Scholar 

  • Jacob, D.J., Prather, M.J., Rasch, P.J., et al., Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers, J. Geophys. Res., 1997, vol. 102, pp. 5953–5970.

    Article  Google Scholar 

  • Jacobi, W. and Andre, K., The vertical distribution of Radon 222, Radon 220 and their decay products in the atmosphere, J. Geophys. Res., 1963, vol. 68, no. 13, pp. 3799–3814.

    Article  Google Scholar 

  • Klovo, A.G., Kupovykh, G.V., and Novikova, O.V., Modeling the processes of subsoil radon transport through the soil and exhalation into the surface atmospheric layer, Izv. Yuzhn. Fed. Univ., Tekh. Nauki, 2011, no. 8, pp. 153–159.

    Google Scholar 

  • Morozov, V.N., Matematicheskoe modelirovanie atmosferno-elektricheskikh protsessov s uchetom vliyaniya aerozol’nykh chastits i radioaktivnykh veshchestv (Mathematical Simulation of Atmospheric Electrical Processes with Participation of Aerosol Particles and Radioactive Substances), St. Petersburg: RGGMU, 2011.

    Google Scholar 

  • Nazaroff, W.W., Radon transport from soil to air, Rev. Geophys., 1992, vol. 30, pp. 137–160.

    Article  Google Scholar 

  • Parovik, R.I., Model for unsteady diffusion–advection of radon in soil–atmosphere, Vestn. KRAUNTs, Ser. Fiz–Mat. Nauki, 2010, no. 1, pp. 39–45.

    Google Scholar 

  • Parovik, R.I., Il’in, I.A., and Firstov, P.P., Mathematical diffusion model for mass transfer of radon (222Rn) in ground and it exhalation in the surface layer of the atmosphere in 2006, Vestn. KRAUNTs, Ser. Nauki Zemle, 2006, no. 1, pp. 110–114.

    Google Scholar 

  • Perrier, F. and Girault, F., Harmonic response of soil radon-222 flux and concentration induced by barometric oscillations, Geophys. J. Int., 2013, vol. 195, pp. 945–971.

    Article  Google Scholar 

  • Schery, S.D. and Huang, S., An estimate of the global distribution of radon emissions from the ocean, Geophys. Rev. Lett., 2004, vol. 31, L19104. doi 10.1029/2004GL021051

    Article  Google Scholar 

  • Smirnov, V.V., Ionizatsiya v troposfere (Ionization in the Troposphere), St. Petersburg: Gidrometeoizdat, 1992.

    Google Scholar 

  • Tanner, A.B., Radon migration in the ground: a review, in The Natural Radiation Environment, Adams, J.A.S. and Lowder, W.M., Eds., Chicago: Univ. Chicago, 1964, pp. 161–190.

    Google Scholar 

  • Wyngaard, J.C., Turbulence in the Atmosphere, New York: Cambridge Univ. Press, 2010.

    Book  Google Scholar 

  • Wyngard, J.C., Moeng, C.-H., and Weil, J.C., Parameterizing turbulent diffusion in the atmospheric boundary layer, in Studies in Turbulence, Gatski, T.B., Speziale, C.G., and Sarkar, S. (eds.), Berlin: Springer, 1992, pp. 3–16.

    Chapter  Google Scholar 

  • Yakovleva, V.S., Diffusion-advective transfer of radon in multilayered geological media, Izv. Tomsk. Politekh. Univ., 2009, vol. 315, no. 2, pp. 67–72.

    Google Scholar 

  • Yakovleva, V.S., Modeling the effect of the state and variability of the atmosphere and lithosphere on the density of radon and thoron flux from the surface, Izv. Tomsk. Politekh. Univ, 2010, vol. 317, no. 2, pp. 162–166.

    Google Scholar 

  • Zhuo, W., Iida, T., and Furukawa, M., Modeling radon flux density from the earth’s surface, J. Nucl. Sci. Tech., 2006, vol. 43, no. 4, pp. 479–482.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Dmitriev.

Additional information

Original Russian Text © E.M. Dmitriev, 2018, published in Fizika Zemli, 2018, No. 5, pp. 115–121.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, E.M. Influence of Atmospheric Radon Transport on a Radon Flux from the Surface. Izv., Phys. Solid Earth 54, 775–781 (2018). https://doi.org/10.1134/S106935131805004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106935131805004X

Navigation