Log in

Radon volumetric activity and ion production in the undisturbed lower atmosphere: Ground-based observations and numerical modeling

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The results of in situ ground-based observations of radon volumetric activity carried out at the Borok Geophysical Observatory of Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences (58°04′ N; 38°14′ E) are presented. Modeling the characteristic diurnal variation in the ion production rate in the undisturbed midlatitude lower atmosphere above land is carried out. The Lagrangian stochastic model of turbulent transport is developed in application to determining the vertical profiles of radon activity for 222Rn and 220Rn isotopes and their radioactive decay products. The results calculated by the Lagrangian stochastic model are matched with the analytical solution for the free atmosphere. Based on the model, the estimate is obtained for the rate of radon outflow from the convective boundary layer to the free clear sky atmosphere. The implications of temperature stratification of the atmosphere for the vertical distribution of the ion production rate at the different radon emission rate are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balsley, B.B., Frehlich, R.G., Jensen, M.L., and Meillier, Y., High-resolution in situ profiling through the stable boundary layer: examination of the SBL top in terms of minimum shear, maximum stratification, and turbulence decrease, J. Atmos. Sci., 2006, vol. 63, pp. 1291–1307.

    Article  Google Scholar 

  • Bazilevskaya, G.A., Usoskin, I.G., Fluckiger, E.O., Harrison, R.G., Desorgher, L., Butikofer, R., Krainev, M.B., Makhmutov, V.S., Stozhkov, Y.I., Svirzhevskaya, A.K., Svirzhevskky, N.S., and Kovaltsov, G.A., Cosmic ray induced ion production in the atmosphere, Space Sci. Rev., 2008, vol. 137, pp. 149–173.

    Article  Google Scholar 

  • Berezina, E.V., Elansky, N.F., Moiseenko, K.B., Belikov, I.B., Shumsky, R.A., Safronov, A.N., and Brenninkmeijer, C.A.M., Estimation of nocturnal 222Rn soil fluxes over Russia from TROIKA measurements, Atmos. Chem. Phys., 2013, vol. 13, pp. 11695–11708.

    Article  Google Scholar 

  • Cassiani, M., Stohl, A., and Brioude, J., Lagrangian stochastic modelling of dispersion in the convective boundary layer with skewed turbulence conditions and a vertical density gradient: formulation and implementation in the FLEXPART model, Boundary-Layer Meteorol., 2015, vol. 154, pp. 367–390. doi 10.1007/s10546-014-9976-5

    Article  Google Scholar 

  • Chamberlain, A.C., Radioactive Aerosols, Cambridge: Cambridge Univ. Press, 1991.

    Book  Google Scholar 

  • Chambers, S., Williams, A.G., Zahorowski, W., Griffiths, A.D., and Crawford, J., Separating remote fetch and local mixing influences on vertical radon measurements in the lower troposphere, Tellus, 2011, vol. 63, no. 5, pp. 843–859.

    Article  Google Scholar 

  • Chambers, S., Williams, A.G., Crawford, J., and Griffiths, A.D., On the use of radon for qualifying the effects of atmospheric stability on urban emissions, Atmos. Chem. Phys., 2015, vol. 15, pp. 1175–1190.

    Article  Google Scholar 

  • Cicerone, R.D., Ebel, J.E., and Britton, J., A systematic compilation of earthquake precursors, Tectonophysics, 2009, vol. 476, pp. 371–396.

    Article  Google Scholar 

  • Conen, F. and Robertson, L.B., Latitudinal distribution of radon-222 flux from continents, Tellus, 2002, vol. 54, no. 2, pp. 127–133.

    Article  Google Scholar 

  • Crawford, J., Chambers, S., Cohen, D.D., Griffiths, A., Williams, A., and Stelcer, E., Using radon-222 as an indicator of atmospheric mixing depth in ME-2 for PM2.5 source apportionment, Aerosol and Air Qual. Res., 2015, vol. 15, pp. 611–624.

    Google Scholar 

  • Degrazia, G.A., Anfossi, D., Carvalho, J.C., Mangia, C., Tirabassi, T., and Campos Velho, H.F., Turbulence parameterization for PBL dispersion models in all stability conditions, Atmos. Environ., 2000, vol. 34, pp. 3575–3583.

    Article  Google Scholar 

  • Ditlevsen, O., Stochastic models for atmospheric particle dispersion, Prob. Eng. Mech., 2003, vol. 18, pp. 97–106.

    Article  Google Scholar 

  • Gladkikh, V.A., Makienko, A.E., and Fedorov, V.A., Acoustic Doppler sodar Volna-3, Opt. Atmos. Okeana, 1999, vol. 12, no. 5, pp. 437–444.

    Google Scholar 

  • Gladkikh, V.A. and Makienko, A.E., Digital Ultrasonic Weather Station, Pribory, 2009, vol. 109, no. 7, pp. 21–25.

    Google Scholar 

  • Harrison, R.G., Nicoll, K.A., and Aplin, K.L., Vertical profile measurements of lower troposphere ionization, J. Atmos. Sol.-Terr. Phys., 2014, vol. 119, pp. 203–210.

    Article  Google Scholar 

  • Hirao, S., Yamazawa, H., and Moriizumi, J., Estimation of global 222Rn flux density from the Earth’s surface, Jpn. J. Health Phys., 2010, vol. 45, no. 2, pp. 161–171.

    Article  Google Scholar 

  • Hoppel, W.A., Anderson, R.V., and Willet, J.C., Atmospheric electricity in the planetary boundary layer, in The Earth’s Electrical Environment, Krider, E.P., and Roble, R.G., Eds., Washington: Natl. Acad. Press, 1986, pp. 149–165.

    Google Scholar 

  • Hosoda, M., Sorimachi, A., Yasuoka, Y., Ishikawa, T., Sahoo, S.K., Furukawa, M., Hassan, N.M., Tokonami, S., and Uchida, S., Simultaneous measurements of radon and thoron exhalation rates and comparison with values calculated by UNSCEAR equation, J. Radiat. Res., 2009, vol. 50, pp. 333–343.

    Article  Google Scholar 

  • Ivlev, L.S. and Dovgalyuk, Yu.A., Fizika atmosfernykh aerozol’nykh sistem (Physics of the Atmospheric Aerosol Systems), St. Petersburg: NIIKh SPbGU, 1999.

    Google Scholar 

  • Jacob, D.J. and Prather, M.J., Radon-222 as a test of convective transport in a general circulation model, Tellus, 1990, vol. 42, no. 1, pp. 118–134.

    Article  Google Scholar 

  • Jacoby-Koaly, S., Campistron, B., Bernard, S., Bénech, B., Ardhuin-Girard, F., Dessens, J., Dupont, E., and Carissimo, B., Turbulent dissipation rate in the boundary layer via UHF wind profiler Doppler spectral width measurements, Boundary-Layer Meteorol., 2002, vol. 103, pp. 361–389.

    Article  Google Scholar 

  • Kadygrov, E.N., Microwave radiometry of atmospheric boundary layer: method, equipment, and applications, Opt. Atmos. Okeana, 2009, vol. 22, no. 7, pp. 697–704.

    Google Scholar 

  • Kazil, L., Stier, P., Zhang, K., Quaas, J., Kinne, S., O’Donnell, D., Rast, S., Esch, M., Ferrachat, S., Lohmann, U., and Feichter, J., Aerosol nucleation and its role for clouds and Earth’s radiative forcing in the aerosolclimate model ECHAM5-HAM, Atmos. Chem. Phys., 2010, vol. 10, pp. 10733–10752.

    Article  Google Scholar 

  • King, C., Gas geochemistry applied to earthquake prediction: an overview, J. Geophys. Res., 1986, vol. 91, pp. 12269–12281.

    Article  Google Scholar 

  • Kulmala, M., Vehkamaki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., and McMurry, P.H., Formation and growth rates of ultrafine atmospheric particles: a review of observations, J. Aerosol Sci., 2004, vol. 35, pp. 143–176.

    Article  Google Scholar 

  • Lee, H.N. and Larsen, R.J., Vertical diffusion in the lower atmosphere using aircraft measurements of 222 Rn, J. Appl. Meteorol., 1997, vol. 36, pp. 1262–1270.

    Article  Google Scholar 

  • Lin, J.C., Lagrangian modeling of the atmosphere: an introduction, in Lagrangian Modeling of the Atmosphere, Lin, J., Brunner, D., Gerbig, C., Stohl, A., Luhar, A., and Webley, P., Eds., Washington: AGU Geopress, 2012, pp. 1–11.

    Google Scholar 

  • Lin, J.C. and Gerbig, C., How can we satisfy the well-mixed criterion in highly inhomogeneous flows? A practical approach, in Lagrangian Modeling of the Atmosphere, Lin, J., Brunner, D., Gerbig, C., Stohl, A., Luhar, A., and Webley, P., Eds., Washington: AGU Geopress, 2012, pp. 59–69.

  • Liu, S.C., McAfee, J.R., and Cicerone, R.J., Radon 222 and tropospheric vertical transport, J. Geophys. Res., 1984, vol. 89, pp. 7291–7297.

    Article  Google Scholar 

  • Liu, S. and Liang, X.-Z., Observed diurnal cycle climatology of planetary boundary layer height, J. Clim., 2010, vol. 23, pp. 5790–5809.

    Article  Google Scholar 

  • Luhar, A.K., Hibberd, M.F., and Borgas, M.S., A skewed meandering-plume model for concentration statistics in the convective boundary layer, Atmos. Environ., 2000, vol. 34, pp. 3599–3616.

    Article  Google Scholar 

  • Makino, M. and Ogawa, T., Quantitative estimation of global circuit, J. Geophys. Res., 1985, vol. 90, pp. 5961–5966.

    Article  Google Scholar 

  • Mazin, I.P. and Khrgian, A.Kh., Oblaka i oblachnaya atmosfera. Spravochnik (Clouds and Cloudy Atmosphere: Reference Book), Leningrad: Gidrometeoizdat, 1989.

    Google Scholar 

  • Neher, H.V., Cosmic ray particles that changed from 1954 to 1958 to 1965, J. Geophys. Res., 1967, vol. 72, pp. 1527–1539.

    Article  Google Scholar 

  • Neher, H.V., Cosmic rays at high latitudes and altitudes covering four solar maxima, J. Geophys. Res., 1971, vol. 76, pp. 1637–1651.

    Article  Google Scholar 

  • Omori, Y. and Nagahama, H., Radon as an indicator of nocturnal atmospheric stability: a simplified theoretical approach, Boundary-Layer Meteorol., 2015, vol. 158, no. 2, pp. 351–359. doi 10.1007/s10546-015-0089-6

    Article  Google Scholar 

  • Papastefanou, C., Radioactive aerosols, Amsterdam: Elsevier, 2008.

    Google Scholar 

  • Rakesh, P.T., Venkatesan, R., and Srinivas, C.V., Formulation of TKE based empirical diffusivity relations from turbulence measurements and incorporation in a Lagrangian particle dispersion model, Envir. Fluid Mech., 2013, vol. 13, pp. 353–369.

    Article  Google Scholar 

  • Smirnov, V.V., Ionizatsiya v troposfere (Ionization in the Troposphere), St. Petersburg: Gidrometeoizdat, 1992.

    Google Scholar 

  • Sorbjan, Z. and Balsley, B.B., Microstructure of turbulence in the stably stratified boundary layer, Boundary-Layer Meteorol., 2008, vol. 129, no. 2, pp. 191–210.

    Article  Google Scholar 

  • Stohl, A. and Thomson, D.J., A density correction for Lagrangian particle dispersion models, Boundary-Layer Meteorol., 1999, vol. 90, no. 1, pp. 155–167.

    Article  Google Scholar 

  • Stull, R.B., An Introduction to Boundary Layer Meteorology, Dordrecht: Kluwer, 1988.

    Book  Google Scholar 

  • Svensmark, H., Pedersen, J.O.P., Marsh, N.D., Enghoff, M.B., and Uggerhoj, U.I., Experimental evidence for the role of ions in particle nucleation under atmospheric conditions, Proc. R. Soc. A, 2007, vol. 463, pp. 385–396.

    Article  Google Scholar 

  • Taylor, A.C., Beare, R.J., and Thomson, D.J., Simulating dispersion in the evening-transition boundary layer, Boundary- Layer Meteorol., 2014, vol. 153, no. 3, pp. 389–407.

    Article  Google Scholar 

  • Thomas, D., Geochemical precursors to seismic activity, Pure Appl. Geophys., 1988, vol. 126, pp. 241–266.

    Article  Google Scholar 

  • Thomson, D.J., Criteria for the selection of stochastic models of particle trajectories in turbulent flows, J. Fluid Mech., 1987, vol. 180, pp. 529–556.

    Article  Google Scholar 

  • Thomson, D.J., Physick, W.L., and Maryon, R.H., Treatment of interfaces in random walk dispersion models, J. Appl. Meteorol., 1997, vol. 36, pp. 1284–1295.

    Article  Google Scholar 

  • Tinsley, B.A. and Zhou, L., Initial results of a global circuit model with variable stratospheric aerosols, J. Geophys. Res., 2006, vol. 111, D16205. doi 10.1029/2005JD006988

    Article  Google Scholar 

  • Tjernström, M., Balsley, B.B., Svensson, G., and Nappo, C.J., The effects of critical layers on residual layer turbulence, J. Atmos. Sci., 2009, vol. 66, pp. 468–480.

    Article  Google Scholar 

  • Usoskin, I.G., Gladysheva, O.G., and Kovaltsov, G.A., Cosmic ray-induced ionization in the atmosphere: spatial and temporal changes, J. Atmos. Sol.-Terr. Phys., 2004, vol. 66, pp. 1791–1796.

    Article  Google Scholar 

  • Usoskin, I.G. and Kovaltsov, G.A., Cosmic ray induced ionization in the atmosphere: full modeling and practical applications, J. Geophys. Res., 2006, vol. 111, D21206. doi 10.1029/2006JD007150

    Article  Google Scholar 

  • Vargas, A., Arnold, D., Adame, J.A., Grossi, C., Hernandes-Ceballos, M.A., and Bolivar, J.P., Analysis of the vertical radon structure at the Spanish El Arenosillo tower station, J. Environ. Radioact., 2015, vol. 139, pp. 1–17.

    Article  Google Scholar 

  • Vinuesa, J.-F., Basu, S., and Galmarini, S., The diurnal evolution of 222Rn and its progeny in the atmospheric boundary layer during the WANGARA experiment, Atmos. Chem. Phys., 2007, vol. 7, pp. 5003–5019.

    Article  Google Scholar 

  • Vinuesa, J.-F. and Galmarini, S., Caracterization of the 222Rn family turbulent transport in the convective atmospheric boundary layer, Atmos. Chem. Phys., 2007, vol. 7, pp. 697–712.

    Article  Google Scholar 

  • Williams, A.G., Zahorowski, W., Chambers, S., Griffiths, A., Hacker, J.M., Element, A., and Werczynsky, S., The vertical distribution of radon in clear and cloudy daytime terrestrial boundary layers, J. Atmos. Sci., 2011, vol. 68, pp. 155–174.

    Article  Google Scholar 

  • Wyngaard, J.C., Turbulence in the Atmosphere, Cambridge: Cambridge Univ. Press, 2010.

    Book  Google Scholar 

  • Yu, F., Ion-mediated nucleation in the atmosphere: key controlling parameters, implications, and look-up table, J. Geophys. Res., 2010, vol. 115, D03206. doi 10.1029/2009JD012630

    Article  Google Scholar 

  • Zhang, K., Feichter, J., Kazil, J., Wan, H., Zhuo, W., Griffiths, A.D., Sartorius, H., Zahorowski, W., Ramonet, M., Schmidt, M., Yver, C., Neubert, R.E.M., and Brunke, E.-G., Radon activity in the lower troposphere and its impact on ionization rate: a global estimate using different radon emissions, Atmos. Chem. Phys., 2011, vol. 11, pp. 7817–7838.

    Article  Google Scholar 

  • Zhuo, W., Iida, T., and Furukawa, M., Modeling radon flux density from the Earth’s surface, J. Nucl. Sci. Technol., 2006, vol. 43, no. 4, pp. 479–482.

    Article  Google Scholar 

  • Zukau, V.V., Yakovleva, V.S., Karataev, V.D., and Nagorskii, P.M., Ionization of surface atmosphere by ionizing radiation of soil radionuclides, Izv. Tomsk. Politekh. Univ., 2010, vol. 317, no. 2, pp. 171–175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Galichenko.

Additional information

Original Russian Text © S.V. Anisimov, S.V. Galichenko, K.V. Aphinogenov, A.P. Makrushin, N.M. Shikhova, 2017, published in Fizika Zemli, 2017, No. 1, pp. 155–170.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimov, S.V., Galichenko, S.V., Aphinogenov, K.V. et al. Radon volumetric activity and ion production in the undisturbed lower atmosphere: Ground-based observations and numerical modeling. Izv., Phys. Solid Earth 53, 147–161 (2017). https://doi.org/10.1134/S1069351317010037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351317010037

Keywords

Navigation