Log in

Surface Modification of Biomedical Scaffolds by Plasma Treatment

  • SURFACE AND THIN FILMS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The effects of plasma treatment on the surface roughness and hydrophility of polymer materials used as biodegradable scaffolds (polylactide films, sponges, and nonwoven fibrous sheets) have been studied. Two methods have been used for quantitative estimation of changes: three-dimensional reconstruction of the scaffold surfaces using scanning electron microscopy (SEM) and BET physical adsorption analysis. Proceeding from the experimental results, it is established that plasma treatment forms nano- and micropits on the sample surface and thus increases its hydrophility (moreover, the surface morphology can be varied by changing the treatment duration). It is shown that plasma treatment is an efficient method for controlled increase in the roughness of polymer materials, which can lead to enhancement of adhesion and proliferation of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. F. J. O’brien, Mater. Today. 14 (3), 88 (2011). https://doi.org/10.1016/S1369-7021(11)70058-X

    Article  Google Scholar 

  2. H. I. Chang and Y. Wang, Regener. Medium. Tissue Eng.: Cells Biomater. InTechOpen. (2011). https://doi.org/10.5772/21983

  3. D. Narayan and S. S. Venkatraman, J. Biomed. Mater. Res. A 87 (3), 710 (2008). https://doi.org/10.1002/jbm.a.31749

    Article  Google Scholar 

  4. H. Sunami, I. Yokota, and Y. Igarashi, Biomater. Sci. 2 (3), 399 (2014). https://doi.org/10.1039/C3BM60237K

    Article  Google Scholar 

  5. M. T. Khorasani, H. Mirzadeh, and S. Irani, Radiat. Phys. Chem. 77 (3), 280 (2008). https://doi.org/10.1016/j.radphyschem.2007.05.013

    Article  ADS  Google Scholar 

  6. F. Zamani, M. Amani-Tehran, M. Latifi, et al., J. Mater. Sci.: Mater. Med. 24 (6), 1551 (2013). https://doi.org/10.1007/s10856-013-4905-6

    Article  Google Scholar 

  7. A. Davoodi, H. H. Zadeh, M. D. Joupari, et al., AIP Adv. 10 (12), 125205 (2020). https://doi.org/10.1063/5.0022306

  8. S. de Valence, J.-C. Tille, C. Chaabane, et al., Eur. J. Pharm. Biopharm. 85 (1), 78 (2013). https://doi.org/10.1016/j.ejpb.2013.06.012

    Article  Google Scholar 

  9. P. K. Chu, J. Y. Chen, L. P. Wang, et al., Mater. Sci. Eng. R: Rep. 36 (5–6), 143 (2002). https://doi.org/10.1016/S0927-796X(02)00004-9

    Article  Google Scholar 

  10. C. Ozcan, P. Zorlutuna, V. Hasirci, et al., Macromol. Symp. 269 (1), 128 (2008). https://doi.org/10.1002/masy.200850916

    Article  Google Scholar 

  11. J.-L. Dewez, J.-B. Lhoest, E. Detrait, et al., Biomaterials 19 (16), 1441 (1998). https://doi.org/10.1016/S0142-9612(98)00055-6

    Article  Google Scholar 

  12. R. L. Williams, D. J. Wilson, and N. P. Rhodes, Biomaterials 25 (19), 4659 (2004). https://doi.org/10.1016/j.biomaterials.2003.12.010

    Article  Google Scholar 

  13. N. P. Rhodes, D. J. Wilson, and R. L. Williams, Biomaterials 28 (31), 4561 (2007). https://doi.org/10.1016/j.biomaterials.2007.07.008

    Article  Google Scholar 

  14. M. T. Khorasani and H. Mirzadeh, Radiat. Phys. Chem. 76 (6), 1011 (2007). https://doi.org/10.1016/j.radphyschem.2006.10.002

    Article  ADS  Google Scholar 

  15. V. Jokinen, P. Suvanto, and S. Franssila, Biomicrofluidics 6 (1), 016501 (2012). https://doi.org/10.1063/1.3673251

  16. F. Lopresti, S. Campora, G. Tirri, et al., Mater. Sci. Eng. C 127, 112248 (2021). https://doi.org/10.1016/j.msec.2021.112248

  17. A. Popelka, A. Abdulkareem, A. A. Mahmoud, et al., Surf. Coat. Technol. 400, 126216 (2020). https://doi.org/10.1016/j.surfcoat.2020.126216

  18. H. M. Heidemann, M. E. R. Dotto, J. B. Laurindo, et al., Colloids Surf. A 580, 123739 (2019). https://doi.org/10.1016/j.colsurfa.2019.123739

  19. I. Junkar, U. Cvelbar, and M. Lehocký, Mater. Tehnol. 45 (3), 221 (2011).

    Google Scholar 

  20. S. Brunauer, The Adsorption of Gases and Vapor (Princeton Univ. Press, London, 1943).

    Google Scholar 

  21. A. A. Mikhutkin and A. L. Vasil’ev, Crystallogr. Rep. 59 (6), 908 (2014). https://doi.org/10.1134/S1063774514060212

    Article  ADS  Google Scholar 

  22. R. A. Kamyshinskii, T. D. Patsaev, T. Tenchurin, et al., Crystallogr. Rep. 65 (5), 762 (2020). https://doi.org/10.1134/S1063774520050107

    Article  ADS  Google Scholar 

  23. V. P. Gavrilenko, D. A. Karabanov, A. Yu. Kuzin, et al., Meas. Tech. 58 (3), 256 (2015). https://doi.org/10.1007/s11018-015-0695-1

    Article  Google Scholar 

  24. A. Yu. Kuzin, A. L. Vasil’ev, V. B. Mityukhlyaev, et al., Meas. Tech. 59 (3), 230 (2016). https://doi.org/10.1007/s11018-016-0948-7

    Article  Google Scholar 

  25. A. Yu. Kuzin, A. L. Vasil’ev, D. A. Karabanov, et al., Meas. Tech. 59 (8), 817 (2016). https://doi.org/10.1007/s11018-016-1050-x

    Article  Google Scholar 

  26. A. Riveiro, A. L. B. Maçon, J. del Val, et al., Front. Phys. 6, 16 (2018). https://doi.org/10.3389/fphy.2018.00016

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 21-13-00321 “Deformation Behavior of Various Biodegradable Scaffolds under Mechanical Load”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Vasiliev.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yastremsky, E.V., Patsaev, T.D., Mikhutkin, A.A. et al. Surface Modification of Biomedical Scaffolds by Plasma Treatment. Crystallogr. Rep. 67, 421–427 (2022). https://doi.org/10.1134/S1063774522030233

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522030233

Navigation