Surface Modification of Tissue Engineering Scaffolds

  • Chapter
  • First Online:
Polymeric Biomaterials for Tissue Regeneration

Abstract

The biomaterial surface is typically engineered to elicit appropriate cellular responses. This chapter deals with commonly used methods to modify and characterise biomaterial surfaces. The first part describes surface modification technologies, broadly categorised into physical methods (comprising topographical and wettability engineering approaches) and chemical methods (comprising substantial chemical manipulation, such as plasma-based methods). In the second part, methods for the characterisation of the material are presented. These include physical assessments, where visualisation of the modified surfaces is performed, chemical assessments aimed at identifying changes in molecular compositions and, finally, biological evaluation, with a focus on cytocompatibility as an important preliminary evaluation of safety of the modified material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng Z, Teoh S-H. Surface modification of ultra thin poly (ε-caprolactone) films using acrylic acid and collagen. Biomaterials. 2004;25(11):1991–2001. doi:http://dx.doi.org/10.1016/j.biomaterials.2003.08.038.

    Article  CAS  PubMed  Google Scholar 

  2. Huebsch N, Mooney DJ. Inspiration and application in the evolution of biomaterials. Nature. 2009;462(7272):426–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gupta B. Radiation effects on polymers for biological use, Advances in polymer science, vol. 162. Berlin: Springer; 2003. doi:10.1007/3-540-45668-6.

    Book  Google Scholar 

  4. Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nat Mater. 2009;8(1):15–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Erakovic S, Jankovic A, Tsui GC, Tang C-Y, Miskovic-Stankovic V, Stevanovic T. Novel bioactive antimicrobial lignin containing coatings on titanium obtained by electrophoretic deposition. Int J Mol Sci. 2014;15(7):12294–322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Gour N, Ngo KX, Vebert‐Nardin C. Anti‐infectious surfaces achieved by polymer modification. Macromol Mater Eng. 2014;299(6):648–68.

    Article  CAS  Google Scholar 

  7. Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev. 2015;44(15):5680–742.

    Article  CAS  PubMed  Google Scholar 

  8. Rudolph A, Teske M, Illner S, Kiefel V, Sternberg K, Grabow N, Wree A, Hovakimyan M. Surface modification of biodegradable polymers towards better biocompatibility and lower thrombogenicity. PLoS One. 2015;10(12):e0142075. doi:10.1371/journal.pone.0142075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Milleret V, Hefti T, Hall H, Vogel V, Eberli D. Influence of the fiber diameter and surface roughness of electrospun vascular grafts on blood activation. Acta Biomater. 2012;8(12):4349–56. doi:http://dx.doi.org/10.1016/j.actbio.2012.07.032.

    Article  CAS  PubMed  Google Scholar 

  10. Provenzano PP, Inman DR, Eliceiri KW, Trier SM, Keely PJ. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys J. 2008;95(11):5374–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Flemming R, Murphy C, Abrams G, Goodman S, Nealey P. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 1999;20(6):573–88.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou F, Yuan L, Huang H, Chen H. Phenomenon of “contact guidance” on the surface with nano-micro-groove-like pattern and cell physiological effects. Chin Sci Bull. 2009;54(18):3200–5. doi:10.1007/s11434-009-0366-1.

    Article  Google Scholar 

  13. Britland S, Morgan H, Wojiak-Stodart B, Riehle M, Curtis A, Wilkinson C. Synergistic and hierarchical adhesive and topographic guidance of BHK cells. Exp Cell Res. 1996;228(2):313–25. doi:http://dx.doi.org/10.1006/excr.1996.0331.

    Article  CAS  PubMed  Google Scholar 

  14. Sun F, Casse D, Van Kan JA, Ge R, Watt F. Geometric control of fibroblast growth on proton beam-micromachined scaffolds. Tissue Eng. 2004;10(1–2):267–72.

    Article  CAS  PubMed  Google Scholar 

  15. Driscoll MK, Sun X, Guven C, Fourkas JT, Losert W. Contact guidance of amoeboid cells via nanotopography. ACS Nano. 2014;8(4):3546–3555. doi:10.1021/nn406637c.

    Google Scholar 

  16. Bettinger CJ, Langer R, Borenstein JT. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew Chem Int Ed Engl. 2009;48(30):5406–15. doi:10.1002/anie.200805179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Biggs MJP, Richards RG, Gadegaard N, Wilkinson CDW, Dalby MJ. The effects of nanoscale pits on primary human osteoblast adhesion formation and cellular spreading. J Mater Sci: Mater Med. 2007.;18(2):399–404. doi:10.1007/s10856-006-0705-6.

    Google Scholar 

  18. Dalby MJ, Gadegaard N, Oreffo ROC. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat Mater. 2014;13(6):558–69. doi:10.1038/nmat3980.

    Article  CAS  PubMed  Google Scholar 

  19. Cavalcanti-Adam EA, Volberg T, Micoulet A, Kessler H, Geiger B, Spatz JP. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys J. 2007;92(8):2964–74. doi:10.1529/biophysj.106.089730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yim EK, Darling EM, Kulangara K, Guilak F, Leong KW. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials. 2010;31(6):1299–306. doi:10.1016/j.biomaterials.2009.10.037.

    Article  CAS  PubMed  Google Scholar 

  21. Decuzzi P, Ferrari M. Modulating cellular adhesion through nanotopography. Biomaterials. 2010;31(1):173–9. doi:http://dx.doi.org/10.1016/j.biomaterials.2009.09.018.

    Article  CAS  PubMed  Google Scholar 

  22. Goodman SL, Sims PA, Albrecht RM. Three-dimensional extracellular matrix textured biomaterials. Biomaterials. 1996;17(21):2087–95. doi:http://dx.doi.org/10.1016/0142-9612(96)00016-6.

    Article  CAS  PubMed  Google Scholar 

  23. Ozaki I, Hamajima H, Matsuhashi S, Mizuta T. Regulation of TGF-β1-induced proapoptotic signaling by growth factor receptors and extracellular matrix receptor integrins in the liver. Front Physiol. 2011;2. doi:10.3389/fphys.2011.00078.

  24. Teo BKK, Wong ST, Lim CK, Kung TYS, Yap CH, Ramagopal Y, Romer LH, Yim EKF. Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. ACS Nano. 2013;7(6):4785–98. doi:10.1021/nn304966z.

    Article  CAS  PubMed  Google Scholar 

  25. Cao H, Marcy G, Goh ELK, Wang F, Wang J, Chew SY. The effects of nanofiber topography on astrocyte behavior and gene silencing efficiency. Macromol Biosci. 2012;12(5):666–74.

    Article  CAS  PubMed  Google Scholar 

  26. Tsimbouri PM, Murawski K, Hamilton G, Herzyk P, Oreffo ROC, Gadegaard N, Dalby MJ. A genomics approach in determining nanotopographical effects on MSC phenotype. Biomaterials. 2013;34(9):2177–84. doi:http://dx.doi.org/10.1016/j.biomaterials.2012.12.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R, Murawski K, Kingham E, Oreffo ROC, Dalby MJ. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater. 2011;10(8):637–44. doi:http://www.nature.com/nmat/journal/v10/n8/abs/nmat3058.html#supplementary-information.

    Article  CAS  PubMed  Google Scholar 

  28. Chen W, Villa-Diaz LG, Sun Y, Weng S, Kim JK, Lam RHW, Han L, Fan R, Krebsbach PH, Fu J. Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. ACS Nano. 2012;6(5):4094–103. doi:10.1021/nn3004923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chew SY, Low WC. Scaffold-based approach to direct stem cell neural and cardiovascular differentiation: an analysis of physical and biochemical effects. J Biomed Mater Res A. 2011;97(3):355–74.

    Article  PubMed  CAS  Google Scholar 

  30. Ceballos D, Navarro X, Dubey N, Wendelschafer-Crabb G, Kennedy WR, Tranquillo RT. Magnetically aligned collagen gel filling a collagen nerve guide improves peripheral nerve regeneration. Exp Neurol. 1999;158(2):290–300. doi:http://dx.doi.org/10.1006/exnr.1999.7111.

    Article  CAS  PubMed  Google Scholar 

  31. Chew SY, Mi RF, Hoke A, Leong KW. Aligned protein-polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform. Adv Funct Mater. 2007;17(8):1288–96. doi:10.1002/adfm.200600441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen F, Lee CN, Teoh SH. Nanofibrous modification on ultra-thin poly(e-caprolactone) membrane via electrospinning. Mater Sci Eng C. 2007, March;27(2):325–32. ISSN 0928–4931, http://dx.doi.org/10.1016/j.msec.2006.05.004.

    Google Scholar 

  33. Flamm DL, Auciello O, d’Agostino R. Plasma deposition, treatment, and etching of polymers: the treatment and etching of polymers. New York: Elsevier; 2012.

    Google Scholar 

  34. Tiaw KS, Goh SW, Hong M, Wang Z, Lan B, Teoh SH. Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications. Biomaterials. 2005;26(7):763–9. doi:10.1016/j.biomaterials.2004.03.010.

    Article  CAS  PubMed  Google Scholar 

  35. Wang ZY, Teo EY, Chong MS, Zhang QY, Lim J, Zhang ZY, Hong MH, Thian ES, Chan JK, Teoh SH. Biomimetic three-dimensional anisotropic geometries by uniaxial stretch of poly(epsilon-caprolactone) films for mesenchymal stem cell proliferation, alignment, and myogenic differentiation. Tissue Eng Part C Methods. 2013;19(7):538–49. doi:10.1089/ten.TEC.2012.0472.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wang ZY, Lim J, Ho YS, Zhang QY, Chong MS, Tang M, Hong MH, Chan JK, Teoh SH, Thian ES. Biomimetic three-dimensional anisotropic geometries by uniaxial stretching of poly(epsilon-caprolactone) films: degradation and mesenchymal stem cell responses. J Biomed Mater Res A. 2014;102(7):2197–207. doi:10.1002/jbm.a.34899.

    Article  PubMed  CAS  Google Scholar 

  37. Wang Z, Du Z, Chan JKY, Teoh SH, Thian ES, Hong M. Direct laser microperforation of bioresponsive surface-patterned films with through-hole arrays for vascular tissue-engineering application. ACS Biomater Sci Eng. 2015;1(12):1239–49. doi:10.1021/acsbiomaterials.5b00455.

    Article  CAS  Google Scholar 

  38. Tamada Y, Ikada Y. Fibroblast growth on polymer surfaces and biosynthesis of collagen. J Biomed Mater Res. 1994;28(7):783–9. doi:10.1002/jbm.820280705.

    Article  CAS  PubMed  Google Scholar 

  39. Webb K, Hlady V, Tresco PA. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J Biomed Mater Res. 1998;41(3):422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bassi A, Gough J, Zakikhani M, Downes S. The chemical and physical properties of poly (ε-caprolactone) scaffolds functionalised with poly (vinyl phosphonic acid-co-acrylic acid). J Tissue Eng. 2011;2(1):31–8.

    Google Scholar 

  41. Wong W, Yeo A, Sju E, Teoh S. Modifications in surface characteristics and pore morphology of PCL-TCP scaffolds under varying alkaline treatment conditions. J Biomed Mater Res A. 2010 Jun 15;93(4):1358–67. doi: 10.1002/jbm.a.32633.

    Google Scholar 

  42. Wang Y-Q, Cai J-Y. Enhanced cell affinity of poly(l-lactic acid) modified by base hydrolysis: wettability and surface roughness at nanometer scale. Curr Appl Phys. 2007;7(Supplement 1):e108–11. doi:http://dx.doi.org/10.1016/j.cap.2006.11.027.

    Article  Google Scholar 

  43. Park G, Park K, Webster T. NaOH-treated PLGA scaffolds allow for greater articular chondrocyte functions. In: Bioengineering conference, 2004. Proceedings of the IEEE 30th Annual Northeast, 2004. IEEE, pp 148–9.

    Google Scholar 

  44. Nam YS, Yoon JJ, Lee JG, Park TG. Adhesion behaviours of hepatocytes cultured onto biodegradable polymer surface modified by alkali hydrolysis process. J Biomater Sci Polym Ed. 1999;10(11):1145–58.

    Article  CAS  PubMed  Google Scholar 

  45. Ahad IU, Butruk B, Ayele M, Budner B, Bartnik A, Fiedorowicz H, Ciach T, Brabazon D. Extreme ultraviolet (EUV) surface modification of polytetrafluoroethylene (PTFE) for control of biocompatibility. Nucl Instrum Methods Phys Res B: Beam Interact Mater Atoms. 2015;364:98–107. doi:http://dx.doi.org/10.1016/j.nimb.2015.08.093.

    Article  CAS  Google Scholar 

  46. Ventrelli L, Fujie T, Turco SD, Basta G, Mazzolai B, Mattoli V. Influence of nanoparticle-embedded polymeric surfaces on cellular adhesion, proliferation, and differentiation. J Biomed Mater Res A. 2014;102(8):2652–61.

    Article  PubMed  CAS  Google Scholar 

  47. Pan H, Zheng Q, Yang S, Guo X. Effects of functionalization of PLGA-[Asp-PEG]n copolymer surfaces with Arg-Gly-Asp peptides, hydroxyapatite nanoparticles, and BMP-2-derived peptides on cell behavior in vitro. J Biomed Mater Res A. 2014;102(12):4526–35. doi:10.1002/jbm.a.35129.

    PubMed  Google Scholar 

  48. Jaganathan SK, Balaji A, Vellayappan MV, Subramanian AP, John AA, Asokan MK, Supriyanto E. Review: radiation-induced surface modification of polymers for biomaterial application. J Mater Sci. 2015;50(5):2007–18.

    Article  CAS  Google Scholar 

  49. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24(24):4385–415. doi:http://dx.doi.org/10.1016/S0142-9612(03)00343-0.

    Article  CAS  PubMed  Google Scholar 

  50. Katti DS, Vasita R, Shanmugam K. Improved biomaterials for tissue engineering applications: surface modification of polymers. Curr Top Med Chem. 2008;8(4):341–53.

    Article  Google Scholar 

  51. **e Z, Buschle‐Diller G, DeInnocentes P, Bird RC. Electrospun poly (D, L)-lactide nonwoven mats for biomedical application: surface area shrinkage and surface entrapment. J Appl Polym Sci. 2011;122(2):1219–25.

    Article  CAS  Google Scholar 

  52. Duran H, Ogura K, Nakao K, Vianna SD, Usui H, Advincula RC, Knoll W. High-vacuum vapor deposition and in situ monitoring of N-carboxy anhydride benzyl glutamate polymerization. Langmuir. 2009;25(18):10711–8.

    Article  CAS  PubMed  Google Scholar 

  53. Shtansky DV, Grigoryan AS, Toporkova AK, Arkhipov AV, Sheveyko AN, Kiryukhantsev-Korneev PV. Modification of polytetrafluoroethylene implants by depositing TiCaPCON films with and without stem cells. Surf Coat Technol. 2011;206(6):1188–95. doi:http://dx.doi.org/10.1016/j.surfcoat.2011.08.029.

    Article  CAS  Google Scholar 

  54. Ryu GH, Yang W-S, Roh H-W, Lee I-S, Kim JK, Lee GH, Lee DH, Park BJ, Lee MS, Park J-C. Plasma surface modification of poly (d,l-lactic-co-glycolic acid) (65/35) film for tissue engineering. Surf Coat Technol. 2005;193(1–3):60–4. doi:http://dx.doi.org/10.1016/j.surfcoat.2004.07.062.

    Article  CAS  Google Scholar 

  55. Murcia-López S, Fàbrega C, Monllor-Satoca D, Hernández-Alonso MD, Penelas-Pérez G, Morata A, Morante JR, Andreu T. Tailoring multilayered BiVO4 photoanodes by pulsed laser deposition for water splitting. ACS Appl Mater Interfaces. 2016;8(6):4076–85. doi:10.1021/acsami.5b11698.

    Article  PubMed  CAS  Google Scholar 

  56. Johnson S. Pulsed laser deposition of hydroxyapatite thin films. Atlanta: Georgia Institute of Technology; 2005.

    Google Scholar 

  57. Hamdi M, Ektessabi A-I. Calcium phosphate coatings: a comparative study between simultaneous vapor deposition and electron beam deposition techniques. Surf Coat Technol. 2006;201(6):3123–8.

    Article  CAS  Google Scholar 

  58. Chang Y-Y, Yang S-J, Wang D-Y. Characterization of TiCr (C, N)/amorphous carbon coatings synthesized by a cathodic arc deposition process. Thin Solid Films. 2007;515(11):4722–6.

    Article  CAS  Google Scholar 

  59. Du Y, Han R, Wen F, Ng San San S, **a L, Wohland T, Leo HL, Yu H. Synthetic sandwich culture of 3D hepatocyte monolayer. Biomaterials. 2008;29(3):290–301. doi:10.1016/j.biomaterials.2007.09.016.

    Article  CAS  PubMed  Google Scholar 

  60. Yang ZL, Wang J, Luo RF, Maitz MF, **g FJ, Sun H, Huang N. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility. Biomaterials. 2010;31(8):2072–83. doi:10.1016/j.biomaterials.2009.11.091.

    Article  CAS  PubMed  Google Scholar 

  61. **e YT, Zhai WY, Chen L, Chang J, Zheng XB, Ding CX. Preparation and in vitro evaluation of plasma-sprayed Mg2SiO4 coating on titanium alloy. Acta Biomater. 2009;5(6):2331–7. doi:10.1016/j.actbio.2009.03.003.

    Article  CAS  PubMed  Google Scholar 

  62. Yang F, Li X, Cheng M, Gong Y, Zhao N, Zhang X, Yang Y. Performance modification of chitosan membranes induced by gamma irradiation. J Biomater Appl. 2002;16(3):215–26. doi:10.1106/088532802021176.

    Article  CAS  PubMed  Google Scholar 

  63. Schulze A, Maitz MF, Zimmermann R, Marquardt B, Fischer M, Werner C, Went M, Thomas I. Permanent surface modification by electron-beam-induced grafting of hydrophilic polymers to PVDF membranes. RSC Adv. 2013;3(44):22518–26. doi:10.1039/C3RA43659D.

    Article  CAS  Google Scholar 

  64. Wen F, Wong HK, Tay CY, Yu H, Li H, Yu T, Tijore A, Boey FYC, Venkatraman SS, Tan LP. Induction of myogenic differentiation of human mesenchymal stem cells cultured on notch agonist (Jagged-1) modified biodegradable scaffold surface. ACS Appl Mater Interfaces. 2014;6(3):1652–61. doi:10.1021/am4045635.

    Article  CAS  PubMed  Google Scholar 

  65. Gupta B, Hilborn JG, Bisson I, Frey P. Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films. J Appl Polym Sci. 2001;81(12):2993–3001. doi:10.1002/app.1749.

    Article  CAS  Google Scholar 

  66. Kim S-W. Surface modification of polypropylene in an impulse corona discharge. Kor J Chem Eng. 1996;13(1):97–100. doi:10.1007/bf02705895.

    Google Scholar 

  67. Ul Ahad I, Bartnik A, Fiedorowicz H, Kostecki J, Korczyc B, Ciach T, Brabazon D. Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation. J Biomed Mater Res A. 2014;102(9):3298–310. doi:10.1002/jbm.a.34958.

    Article  CAS  Google Scholar 

  68. Ensinger W, Müller HR. Surface modification and coating of powders by ion beam techniques. Mater Sci Eng A. 1994;188(1–2):335–40. doi:http://dx.doi.org/10.1016/0921-5093(94)90389-1.

    Article  Google Scholar 

  69. Shen ZG, Lee CH, Wu C, Jiang DY, Yang SZ. Material surface modification by pulsed ion beam. J Mater Sci. 1990;25(7):3139–41. doi:10.1007/bf00587663.

    Google Scholar 

  70. Saini G, Sautter K, Hild FE, Pauley J, Linford MR. Two-silane chemical vapor deposition treatment of polymer (nylon) and oxide surfaces that yields hydrophobic (and superhydrophobic), abrasion-resistant thin films. J Vac Sci Technol A. 2008;26(5):1224–34. doi:http://dx.doi.org/10.1116/1.2953699.

    Article  CAS  Google Scholar 

  71. Shafi HZ, Khan Z, Yang R, Gleason KK. Surface modification of reverse osmosis membranes with zwitterionic coating for improved resistance to fouling. Desalination. 2015;362:93–103. doi:http://dx.doi.org/10.1016/j.desal.2015.02.009.

    Article  CAS  Google Scholar 

  72. Yu H, Lui YS, **ong S, Leong WS, Wen F, Nurkahfianto H, Rana S, Leong DT, Ng KW, Tan LP. Insights into the role of focal adhesion modulation in myogenic differentiation of human mesenchymal stem cells. Stem Cells Dev. 2013;22(1):136–47. doi:10.1089/scd.2012.0160.

    Article  CAS  PubMed  Google Scholar 

  73. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89. doi:10.1016/j.cell.2006.06.044.

    Article  CAS  PubMed  Google Scholar 

  74. Özçam AE, Efimenko K, Spontak RJ, Fischer DA, Genzer J. Multipurpose polymeric coating for functionalizing inert polymer surfaces. ACS Appl Mater Interfaces. 2016;8(8):5694–705. doi:10.1021/acsami.5b12216.

    Article  PubMed  CAS  Google Scholar 

  75. Chong MSK, Lee CN, Teoh SH. Characterization of smooth muscle cells on poly(ε-caprolactone) films. Mater Sci Eng C. 2007;27(2):309–12. doi:http://dx.doi.org/10.1016/j.msec.2006.03.008.

    Article  CAS  Google Scholar 

  76. Wen F, Chang S, Toh YC, Teoh SH, Yu H. Development of poly (lactic-co-glycolic acid)-collagen scaffolds for tissue engineering. Mater Sci Eng C. 2007;27(2):285–92.

    Article  CAS  Google Scholar 

  77. Chong MSK, Chan J, Choolani M, Lee C-N, Teoh S-H. Development of cell-selective films for layered co-culturing of vascular progenitor cells. Biomaterials. 2009;30(12):2241–51.

    Article  CAS  PubMed  Google Scholar 

  78. Laschke MW, Augustin VA, Sahin F, Anschütz D, Metzger W, Scheuer C, Bischoff M, Aktas C, Menger MD. Surface modification by plasma etching impairs early vascularization and tissue incorporation of porous polyethylene (Medpor®) implants. J Biomed Mat Res Part B Appl Biomater. 2015;n/a-n/a. doi:10.1002/jbm.b.33528

    Google Scholar 

  79. Moraczewski K, Rytlewski P, Malinowski R, Zenkiewicz M. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods. Appl Surf Sci. 2015;346(0):11–7. doi:http://dx.doi.org/10.1016/j.apsusc.2015.03.202.

    Article  CAS  Google Scholar 

  80. Du Y, S-m C, Han R, Chang S, Tang H, Yu H. 3D hepatocyte monolayer on hybrid RGD/galactose substratum. Biomaterials. 2006;27(33):5669–80.

    Article  CAS  PubMed  Google Scholar 

  81. Khelifa F, Ershov S, Habibi Y, Snyders R, Dubois P. Free-radical-induced grafting from plasma polymer surfaces. Chem Rev. 2016;116(6):3975–4005. doi:10.1021/acs.chemrev.5b00634.

    Article  CAS  PubMed  Google Scholar 

  82. Löpez GP, Ratner BD, Tidwell CD, Haycox CL, Rapoza RJ, Horbett TA. Glow discharge plasma deposition of tetraethylene glycol dimethyl ether for fouling-resistant biomaterial surfaces. J Biomed Mater Res. 1992;26(4):415–39. doi:10.1002/jbm.820260402.

    Article  PubMed  Google Scholar 

  83. Cai EZ, Teo EY, **g L, Koh YP, Qian TS, Wen F, Lee JWK, Hing ECH, Yap YL, Lee H, Lee CN, Teoh S-H, Lim J, Lim TC. Bio-conjugated polycaprolactone membranes: a novel wound dressing. Arch Plast Surg. 2014;41(6):638–46.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Holmes S, Schwartz P. Amination of ultra-high strength polyethylene using ammonia plasma. Compos Sci Technol. 1990;38(1):1–21. doi:http://dx.doi.org/10.1016/0266-3538(90)90068-G.

    Article  CAS  Google Scholar 

  85. Hayat U, Tinsley AM, Calder MR, Clarke DJ. ESCA investigation of low-temperature ammonia plasma-treated polyethylene substrate for immobilization of protein. Biomaterials. 1992;13(11):801–6. doi:http://dx.doi.org/10.1016/0142-9612(92)90022-G.

    Article  CAS  PubMed  Google Scholar 

  86. Yue Z, Liu X, Molino PJ, Wallace GG. Bio-functionalisation of polydimethylsiloxane with hyaluronic acid and hyaluronic acid – collagen conjugate for neural interfacing. Biomaterials. 2011;32(21):4714–24. doi:10.1016/j.biomaterials.2011.03.032.

    Article  CAS  PubMed  Google Scholar 

  87. Chong MSK, Teoh S-H, Teo EY, Zhang Z-Y, Lee CN, Koh S, Choolani M, Chan J. Beyond cell capture: antibody conjugation improves hemocompatibility for vascular tissue engineering applications. Tissue Eng Part A. 2010;16(8):2485–95.

    Article  CAS  PubMed  Google Scholar 

  88. Ruiz A, Rathnam KR, Masters KS. Effect of hyaluronic acid incorporation method on the stability and biological properties of polyurethane-hyaluronic acid biomaterials. J Mater Sci Mater Med. 2014;25(2):487–98. doi:10.1007/s10856-013-5092-1.

    Article  CAS  PubMed  Google Scholar 

  89. Suzuki M, Kishida A, Iwata H, Ikada Y. Graft copolymerization of acrylamide onto a polyethylene surface pretreated with glow discharge. Macromolecules. 1986;19(7):1804–8. doi:10.1021/ma00161a005.

    Article  CAS  Google Scholar 

  90. Cheng Z, Teoh S-H. Surface modification of ultra thin poly ([var epsilon]-caprolactone) films using acrylic acid and collagen. Biomaterials. 2004;25(11):1991–2001. doi:10.1016/j.biomaterials.2003.08.038.

    Article  CAS  PubMed  Google Scholar 

  91. Schnyder B, Lippert T, Kötz R, Wokaun A, Graubner V-M, Nuyken O. UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry. Surf Sci. 2003;532–535:1067–71. doi:http://dx.doi.org/10.1016/S0039-6028(03)00148-1.

    Article  CAS  Google Scholar 

  92. Praschak D, Bahners T, Schollmeyer E. PET surface modifications by treatment with monochromatic excimer UV lamps. Appl Phys A. 1998;66(1):69–75. doi:10.1007/s003390050639.

    Google Scholar 

  93. Eve S, Mohr J. Study of the surface modification of the PMMA by UV-radiation. Procedia Eng. 2009;1(1):237–40. doi:http://dx.doi.org/10.1016/j.proeng.2009.06.056.

    Article  CAS  Google Scholar 

  94. Cho J-D, Kim S-G, Hong J-W. Surface modification of polypropylene sheets by UV-radiation grafting polymerization. J Appl Polym Sci. 2006;99(4):1446–61. doi:10.1002/app.22631.

    Article  CAS  Google Scholar 

  95. Daniloska V, Blazevska-Gilev J, Dimova V, Fajgar R, Tomovska R. UV light induced surface modification of HDPE films with bioactive compounds. Appl Surf Sci. 2010;256(7):2276–83. doi:http://dx.doi.org/10.1016/j.apsusc.2009.10.052.

    Article  CAS  Google Scholar 

  96. Bartnik A, Lisowski W, Sobczak J, Wachulak P, Budner B, Korczyc B, Fiedorowicz H. Simultaneous treatment of polymer surface by EUV radiation and ionized nitrogen. Appl Phys A. 2012;109(1):39–43. doi:10.1007/s00339-012-7243-5.

    Article  CAS  Google Scholar 

  97. Reisinger B, Fahrner M, Frischauf I, Yakunin S, Svorcik V, Fiedorowicz H, Bartnik A, Romanin C, Heitz J. EUV micropatterning for biocompatibility control of PET. Appl Phys A. 2010;100(2):511–6. doi:10.1007/s00339-010-5845-3.

    Article  CAS  Google Scholar 

  98. Rahman N, Sato N, Sugiyama M, Hidaka Y, Okabe H, Hara K. The effect of hot DMSO treatment on the gamma]-ray-induced grafting of acrylamide onto PET films. Polym J. 2014;46(7):412–21. doi:http://dx.doi.org/10.1038/pj.2014.12.

    Article  CAS  Google Scholar 

  99. Cunha L, Coutinho FMB, Teixeira VG, Jesus EFO, Gomes AS. Surface modification of styrene-divinylbenzene copolymers by polyacrylamide grafting via gamma irradiation. Polym Bull. 2008;61(3):319–30. doi:10.1007/s00289-008-0962-2.

    Article  CAS  Google Scholar 

  100. Velo-Gala I, López-Peñalver JJ, Sánchez-Polo M, Rivera-Utrilla J. Surface modifications of activated carbon by gamma irradiation. Carbon. 2014;67:236–49. doi:http://dx.doi.org/10.1016/j.carbon.2013.09.087.

    Article  CAS  Google Scholar 

  101. Onyiriuka EC, Hersh LS, Hertl W. Surface modification of polystyrene by gamma-radiation. Appl Spectrosc. 1990;44(5):808–11.

    Article  CAS  Google Scholar 

  102. Kwon OH, Nho YC, Park KD, Kim YH. Graft copolymerization of polyethylene glycol methacrylate onto polyethylene film and its blood compatibility. J Appl Polym Sci. 1999;71(4):631–41. doi:10.1002/(SICI)1097-4628(19990124)71:4<631::AID-APP15>3.0.CO;2-G.

    Article  CAS  Google Scholar 

  103. Zhu Y, Gao C, Liu X, Shen J. Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules. 2002;3(6):1312–9. doi:10.1021/bm020074y.

    Article  CAS  PubMed  Google Scholar 

  104. Liu Y, He T, Gao C. Surface modification of poly(ethylene terephthalate) via hydrolysis and layer-by-layer assembly of chitosan and chondroitin sulfate to construct cytocompatible layer for human endothelial cells. Colloids Surf B Biointerfaces. 2005;46(2):117–26. doi:http://dx.doi.org/10.1016/j.colsurfb.2005.09.005.

    Article  CAS  PubMed  Google Scholar 

  105. Wen F, Chang S, Toh YC, Arooz T, Zhuo L, Teoh SH, Yu H. Development of dual-compartment perfusion bioreactor for serial coculture of hepatocytes and stellate cells in poly(lactic-co-glycolic acid)-collagen scaffolds. J Biomed Mater Res B Appl Biomater. 2008;87B(1):154–62. doi:10.1002/jbm.b.31086.

    Article  CAS  Google Scholar 

  106. Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ. Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis I: physical, chemical, and theoretical aspects. Biomacromolecules. 2004;5(2):463–73. doi:10.1021/bm0343040.

    Article  CAS  PubMed  Google Scholar 

  107. Stamm M. Polymer surface and interface characterization techniques. In: Stamm M, editor. Polymer surfaces and interfaces: characterization, modification and applications. Berlin/Heidelberg: Springer; 2008. p. 1–16. doi:10.1007/978-3-540-73865-7_1.

    Chapter  Google Scholar 

  108. Ma Z, Mao Z, Gao C. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B-Biointerfaces. 2007;60(2):137–57. doi:10.1016/j.colsurfb.2007.06.019.

    Article  CAS  PubMed  Google Scholar 

  109. Vogler EA. Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci. 1998;74:69–117.

    Article  CAS  PubMed  Google Scholar 

  110. Grundke K. Characterization of polymer surfaces by wetting and electrokinetic measurements – contact angle, interfacial tension, zeta potential. In: Stamm M, editor. Polymer surfaces and interfaces: characterization, modification and applications. Berlin/Heidelberg: Springer; 2008. p. 103–38. doi:10.1007/978-3-540-73865-7_6.

    Chapter  Google Scholar 

  111. Murthy NS. Techniques for analyzing biomaterial surface structure, morphology and topography. In: Surface modification of biomaterials. Woodhead Publishing; 2011. pp 232–55. doi:http://dx.doi.org/10.1533/9780857090768.2.232.

    Google Scholar 

  112. Hawker MJ, Pegalajar-Jurado A, Fisher ER. Innovative applications of surface wettability measurements for plasma-modified three-dimensional porous polymeric materials: a review. Plasma Processes Polym. 2015;12(9):846–63. doi:10.1002/ppap.201500035.

    Article  CAS  Google Scholar 

  113. Merrett K, Cornelius RM, McClung WG, Unsworth LD, Sheardown H. Surface analysis methods for characterizing polymeric biomaterials. J Biomater Sci-Polym Ed. 2002;13(6):593–621. doi:10.1163/156856202320269111.

    Article  CAS  PubMed  Google Scholar 

  114. Smith KCA, Oatley CW. The scanning electron microscope and its fields of application. Br J Appl Phys. 1955;6(11):391.

    Article  Google Scholar 

  115. Russell SD, Daghlian CP. Scanning electron microscopic observations on deembedded biological tissue sections: comparison of different fixatives and embedding materials. J Electron Microsc Tech. 1985;2(5):489–95. doi:10.1002/jemt.1060020511.

    Article  Google Scholar 

  116. Variola F. Atomic force microscopy in biomaterials surface science. Phys Chem Chem Phys. 2015;17(5):2950–9. doi:10.1039/c4cp04427d.

    Article  CAS  PubMed  Google Scholar 

  117. Eaton P, West P. Atomic force microscopy. Oxford: Oxford University Press; 2010.

    Book  Google Scholar 

  118. Siedlecki CA, Marchant RE. Atomic force microscopy for characterization of the biomaterial interface. Biomaterials. 1998;19(4–5):441–54. doi:10.1016/s0142-9612(97)00222-6.

    Article  CAS  PubMed  Google Scholar 

  119. Müller M. Vibrational spectroscopic and optical methods. In: Stamm M, editor. Polymer surfaces and interfaces: characterization, modification and applications. Berlin/Heidelberg: Springer; 2008. p. 47–70. doi:10.1007/978-3-540-73865-7_3.

    Chapter  Google Scholar 

  120. Barbucci R, Casolaro M, Magnani A. Characterization of biomaterial surfaces: ATR-FTIR, potentiometric and calorimetric analysis. Clin Mater. 1992;11(1–4):37–51. doi:http://dx.doi.org/10.1016/0267-6605(92)90028-R.

    Article  CAS  PubMed  Google Scholar 

  121. Chittur KK. FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials. 1998;19(4–5):357–69. doi:http://dx.doi.org/10.1016/S0142-9612(97)00223-8.

    Article  CAS  PubMed  Google Scholar 

  122. Pleul D, Simon F. X-ray photoelectron spectroscopy. In: Stamm M, editor. Polymer surfaces and interfaces: characterization, modification and applications. Berlin/Heidelberg: Springer; 2008. p. 71–89. doi:10.1007/978-3-540-73865-7_4.

    Chapter  Google Scholar 

  123. Yang J, Alexander MR. Techniques for analysing biomaterial surface chemistry. In: Surface modification of biomaterials. Woodhead Publishing; 2011. pp 205–32. doi:http://dx.doi.org/10.1533/9780857090768.2.205.

    Google Scholar 

  124. Ratner BD, Castner DG. Electron spectroscopy for chemical analysis. In: Surface analysis – the principal techniques. Wiley; 2009. pp 47–112. doi:10.1002/9780470721582.ch3.

  125. Pleul D, Simon F. Time-of-flight secondary ion mass spectrometry. In: Stamm M, editor. Polymer surfaces and interfaces: characterization, modification and applications. Berlin/Heidelberg: Springer; 2008. p. 91–102. doi:10.1007/978-3-540-73865-7_5.

    Chapter  Google Scholar 

  126. Vickerman JC. Molecular surface mass spectrometry by SIMS. In: Surface analysis – the principal techniques. Wiley; 2009. pp 113–205. doi:10.1002/9780470721582.ch4.

  127. Tyler BJ, Rayal G, Castner DG. Multivariate analysis strategies for processing ToF-SIMS images of biomaterials. Biomaterials. 2007;28(15):2412–23. doi:10.1016/j.biomaterials.2007.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Seow Khoon Chong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Wen, F., Lau, C.C.S., Lim, J., Liao, Y., Teoh, S.H., Chong, M.S.K. (2016). Surface Modification of Tissue Engineering Scaffolds. In: Gao, C. (eds) Polymeric Biomaterials for Tissue Regeneration. Springer, Singapore. https://doi.org/10.1007/978-981-10-2293-7_6

Download citation

Publish with us

Policies and ethics

Navigation