Log in

Plasma Processing of Scaffolds for Tissue Engineering and Regenerative Medicine

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Plasma processes are largely employed in the biomedical field for different kind of materials. In particular, in tissue engineering, biomaterials need to be totally integrated with biological systems in order to be employed as substitutes of artificial prostheses. Since most materials do not allow a correct integration with the biological environment, plasma processes have been demonstrated to be very versatile in altering the material surface properties in order to improve the biocompatibility of materials. The challenge is to plasma modify 3D scaffolds in order to be used for in vivo regeneration of human tissues. The correct 3D biointegration inside living tissues is the crucial objective, towards which many aspects are directed, from the material engineering to its surface modification and affinity with the biological environment. In this paper, the advances in low pressure plasma processes, applied to both 2D rigid substrates and 3D porous structures, are discussed. Further an in vivo experiment in ovine animals using plasma processed 3D scaffolds is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang X, Chang W, Lee P, Wang Y, Yang M, Li J, Kumbar SG, Yu X (2014) PLoS One 9:1

    Google Scholar 

  2. Lanza R, Langer R, Vacanti J (2007) Principles of tissue engineering, 3rd edn. Elsevier Academic Press, China

    Google Scholar 

  3. Leong KF, Cheah CM, Chua CK (2003) Biomaterials 24:2363

    Article  CAS  Google Scholar 

  4. Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R (1993) Biomaterials 14:323

    Article  CAS  Google Scholar 

  5. Morent R, De Geyter N, Desmet T, Dubruel P, Leys C (2011) Plasma Process Polym 8(3):171

    Article  CAS  Google Scholar 

  6. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2012) Biomaterials science. An introduction to materials in medicine. Elsevier Academic Press, USA

    Google Scholar 

  7. Siow KS, Britcher L, Kumar S, Griesser HJ (2006) Plasma Process Polym 3:392

    Article  CAS  Google Scholar 

  8. Favia P, Sardella E, Lopez LC, Laera S, Milella A, Pistillo BR, Intranuovo F, Nardulli M, Gristina R, d’Agostino R (2008) In: Guceri S, Fridman A (ed) Plasma assisted decontamination of biological and chemical agents, NATO-science for peace and security series, pp 203–226

  9. Deslandes Y, Pleizier G, Poire E, Sapieha S, Wertheimer MR, Sacher E (2004) Biomaterials 25:1991

    Article  Google Scholar 

  10. Cheng Z, Teoh SH, Khorasani MT, Mirzadeh H, Irani S (2008) Radiat Phys Chem 77:280

    Article  Google Scholar 

  11. Salerno S, Piscioneri A, Laera S, Morelli S, Favia P, Bader A, Drioli E, De Bartolo L (2009) Biomaterials 30:4348

    Article  CAS  Google Scholar 

  12. Buttiglione M, Vitiello F, Sardella E, Petrone L, Nardulli M, Favia P, d’Agostino R, Gristina R (2007) Biomaterials 28:2932

    Article  CAS  Google Scholar 

  13. Denis L, Cossement D, Godfroid T, Renaux F, Bittencourt C, Snyders R, Hecq M (2009) Plasma Process Polym 6:199

    Article  CAS  Google Scholar 

  14. Dehili C, Lee P, Shakesheff KM, Alexander MR (2006) Plasma Process Polym 3:474

    Article  CAS  Google Scholar 

  15. **e HQ, **ang Q (2000) Eur Polym J 36:509

    Article  CAS  Google Scholar 

  16. Vasilev K, Michelmore A, Martinek P, Chan J, Sah V, Griesser HJ, Short RD (2010) Plasma Process Polym 7:824

    Article  CAS  Google Scholar 

  17. Zhang W, Hou X (1999) Polym Adv Technol 10:465

    Article  CAS  Google Scholar 

  18. Beck AJ, Candan S, Short RD, Goodyear A, Braithwaite NSJ (2001) J Phys Chem B 105:5730

    Article  CAS  Google Scholar 

  19. Hamerli P, Weigel T, Groth T, Paul D (2003) Biomaterials 24:3989

    Article  CAS  Google Scholar 

  20. Shard AG, Whittle JD, Beck AJ, Brookes PN, Bullett NA, Talib RA, Mistry A, Barton D, McArthur SL (2004) J Phys Chem B 108:12472

    Article  CAS  Google Scholar 

  21. Tatoulian M, Bretagnol F, Arefi-Khonsari F, Amouroux J, Bouloussa O, Rondelez F, Paul AJ, Mitchell R (2004) Plasma Process Polym 2:38

    Article  Google Scholar 

  22. Detomaso L, Gristina R, Senesi GS, d’Agostino R, Favia P (2005) Biomaterials 26:3831

    Article  CAS  Google Scholar 

  23. Sardella E, Detomaso L, Gristina R, Senesi GS, Agheli H, Sutherland DS, d’Agostino R, Favia P (2008) Plasma Process Polym 5:540

    Article  CAS  Google Scholar 

  24. Alexander MR, Duc TM (1998) J Mater Chem 8:937

    Article  Google Scholar 

  25. Cheng Z, Teoh SH (2004) Biomaterials 25:1991

    Article  CAS  Google Scholar 

  26. Fahmy A, Mix R, Schonhals A, Friedrich JF (2011) Plasma Process Polym 8:147

    CAS  Google Scholar 

  27. Rinsch CL, Chen XL, Panchalingam V, Eberhart RC, Wang JH, Timmons RB (1996) Langmuir 12:2995

    Article  CAS  Google Scholar 

  28. Truica-Marasescu F, Girard-Lauriault P-L, Lippitz A, Unger WES, Wertheimer MR (2008) Thin Solid Films 516:7406

    Article  CAS  Google Scholar 

  29. Girard-Lauriault PL, Mwale F, Iordanova M, Demers C, Desjardins P, Wertheimer MR (2005) Plasma Process Polym 2:263

    Article  CAS  Google Scholar 

  30. Sardella E, Favia P, Dilonardo E, Petrone L, d’Agostino R (2007) Plasma Process Polym 4:S781

    Article  Google Scholar 

  31. Vogelsang A, Ohl A, Foest R, Schröder K, Weltmann K-D (2012) Plasma Process Polym 9:491

    Article  Google Scholar 

  32. Hu W, Chen Q, Cai H, Zhang Y (2009) Thin Solid Films 517:4268

    Article  CAS  Google Scholar 

  33. Yang H, Sun M, Zhou P, Pan L, Wu C (2010) J Biomed Sci Eng 3:1146

    Article  CAS  Google Scholar 

  34. Wan Y, Tu C, Yang J, Bei J, Wang S (2006) Biomaterials 27:2699

    Article  CAS  Google Scholar 

  35. Safinia L, Datan N, Höhse M, Mantalarisa A, Bismarck A (2005) Biomaterials 26:7537

    Article  CAS  Google Scholar 

  36. Barry JJA, Silva MMCG, Shakesheff KM, Howdle SM, Alexander MR (2005) Adv Funct Mater 15:1134

    Article  CAS  Google Scholar 

  37. Domingos M, Intranuovo F, Gloria A, Gristina R, Ambrosio L, Bártolo PJ, Favia P (2013) Acta Biomater 9:5997

    Article  CAS  Google Scholar 

  38. Barry JJA, Howard D, Shakesheff KM, Howdle SM, Alexander MR (2006) Adv Mater 1406:18

    Google Scholar 

  39. Intranuovo F, Howard D, White LJ, Johal RK, Ghaemmaghami AM, Favia P, Howdle SM, Shakesheff KM, Alexander MR (2011) Acta Biomater 7:3336

    Article  CAS  Google Scholar 

  40. Beamson G, Briggs D (1992) High resolution XPS of organic polymers: the scienta ESCA 300 database. Wiley-VCH, Chichester

    Google Scholar 

  41. Intranuovo F, Sardella E, Gristina R, Nardulli M, White L, Howard D, Shakesheff KM, Alexander MR, Favia P (2011) Surf Coat Technol 205:S548

    Article  CAS  Google Scholar 

  42. Rigogliuso S, Carfì Pavia F, Brucato V, La Carrubba V, Favia P, Intranuovo F, Gristina R, Ghersi G (2012) Chem Eng Trans 27:415

    Google Scholar 

  43. Brun F, Intranuovo F, Mohammadi S, Domingos M, Favia P, Tromba G (2013) J Instrum 8:C07001

    Article  Google Scholar 

  44. Intranuovo F, Gristina R, Brun F, Mohammadi S, Ceccone G, Sardella E, Rossi F, Tromba G, Favia P (2014) Plasma Process Polym 11:184

    Article  CAS  Google Scholar 

  45. Intranuovo F, Gristina R, Lacitignola L, Crovace A, Favia P (2014) National conference on biomaterials. Società Italiana Biomateriali, SIB, Palermo, Italy, July 2–4

Download references

Acknowledgments

The following projects are acknowledged for funding and supporting this research: RIGENERA (Aiuti a Sostegno dei Partenariati Regionali per l’Innovazione, no. P9Y0834); RINOVATIS (Regenerating Nervous and Osteocartilagineous Tissues by Means of Innovative Tissue Engineering Approaches, PON 02_00563_3448479); LIPP (Rete di Laboratorio 51, Regione Puglia); SISTEMA (PONa3_00369 MIUR, Laboratorio per lo Sviluppo Integrato delle Scienze e delle TEcnologie dei Materiali Avanzati e per dispositivi innovativi). Ms. Edda Giuseppina Francioso (University of Bari), Mr. Savino Cosmai (IMIP-CNR) and Mr. Danilo Benedetti (University of Bari) are acknowledged for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Intranuovo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Intranuovo, F., Gristina, R., Fracassi, L. et al. Plasma Processing of Scaffolds for Tissue Engineering and Regenerative Medicine. Plasma Chem Plasma Process 36, 269–280 (2016). https://doi.org/10.1007/s11090-015-9667-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9667-0

Keywords

Navigation