Log in

Grain Size Tailoring to Control Strain Hardening and Improve the Mechanical Properties of a CoCrFeNiMn High-Entropy Alloy

  • Original Paper
  • Published:
High Entropy Alloys & Materials Aims and scope Submit manuscript

Abstract

An equiatomic CoCrFeNiMn high-entropy alloy was processed by severe plastic deformation followed by post-deformation annealing over a range of temperatures and times leading to a wide range of grain sizes from ~ 0.05 to ~ 70 μm. The results demonstrate there is a sharp evolution in grain size and hardness after annealing above 800 °C due to coarsening facilitated by the dissolution of precipitates together with a high rate of diffusion at high temperatures. Grain growth behavior revealed an incremental low value grain growth exponent with increasing annealing temperature together with a high value activation energy for grain growth of ~ 440 kJ mol−1. A critical grain size of ~ 2 µm is proposed in which deformation-induced twinning is suppressed during plastic deformation. Nevertheless, slip and deformation-induced twinning are deformation mechanisms occurring in samples with grain sizes above this critical value. A model is presented for engineering the grain size by controlling the annealing parameters in the fine grain size range to benefit from the advantages of deformation-induced twining in the CoCrFeNiMn alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Code Availability

Not applicable.

References

  1. B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004)

    Article  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004)

    Article  CAS  Google Scholar 

  3. Y. Tian, S. Sun, H. Lin, Z. Zhang, Fatigue behavior of CoCrFeMnNi high-entropy alloy under fully reversed cyclic deformation. J. Mater. Sci. Technol. 35(3), 334–340 (2019)

    Article  CAS  Google Scholar 

  4. Y.J. Kwon, J.W. Won, S.H. Park, J.H. Lee, K.R. Lim, Y.S. Na, C.S. Lee, Ultrahigh-strength CoCrFeMnNi high-entropy alloy wire rod with excellent resistance to hydrogen embrittlement. Mater. Sci. Eng. A 732, 105–111 (2018)

    Article  CAS  Google Scholar 

  5. F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, E.P. George, Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112, 40–52 (2016)

    Article  CAS  Google Scholar 

  6. M.S. Mehranpour, H. Shahmir, M. Nili-Ahmadabadi, Microstructure and excess free volume of severely cold shape rolled CoCrFeNiMn high entropy alloy. J. Alloys Compd. 840, 155672 (2020)

    Article  CAS  Google Scholar 

  7. H. Shahmir, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng. A 676, 294–303 (2016)

    Article  CAS  Google Scholar 

  8. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61(15), 5743–5755 (2013)

    Article  CAS  Google Scholar 

  9. H. Shahmir, P. Asghari-Rad, M.S. Mehranpour, F. Forghani, H.S. Kim, M. Nili-Ahmadabadi, Evidence of FCC to HCP and BCC-martensitic transformations in a CoCrFeNiMn high-entropy alloy by severe plastic deformation. Mater. Sci. Eng. A 807, 140875 (2021)

    Article  CAS  Google Scholar 

  10. S. Sun, Y. Tian, H. Lin, H. Yang, X. Dong, Y. Wang, Z. Zhang, Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement. Mater. Sci. Eng. A 712, 603–607 (2018)

    Article  CAS  Google Scholar 

  11. A. Zaddach, C. Niu, C. Koch, D. Irving, Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM 65(12), 1780–1789 (2013)

    Article  CAS  Google Scholar 

  12. M.S. Mehranpour, H. Shahmir, P. Asghari-Rad, M. Hosseinzadeh, N. Rasooli, H.S. Kim, M. Nili-Ahmadabadi, Upgrading of superior strength–ductility trade-off of CoCrFeNiMn high-entropy alloy by microstructural engineering. Materialia 22, 101394 (2022)

    Article  CAS  Google Scholar 

  13. N. Stepanov, M. Tikhonovsky, N. Yurchenko, D. Zyabkin, M. Klimova, S. Zherebtsov, A. Efimov, G. Salishchev, Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics 59, 8–17 (2015)

    Article  CAS  Google Scholar 

  14. S. Liu, Y. Wu, H. Wang, J. He, J. Liu, C. Chen, X. Liu, H. Wang, Z. Lu, Stacking fault energy of face-centered-cubic high entropy alloys. Intermetallics 93, 269–273 (2018)

    Article  CAS  Google Scholar 

  15. J.-E. Ahn, Y.-K. Kim, S.-H. Yoon, K.-A. Lee, Tuning the microstructure and mechanical properties of cold sprayed equiatomic CoCrFeMnNi high-entropy alloy coating layer. Met. Mater. Int. 27, 6–15 (2020)

    Google Scholar 

  16. Y. Kim, H.K. Park, P. Asghari-Rad, J. Jung, J. Moon, H.S. Kim, Constitutive modeling with critical twinning stress in CoCrFeMnNi high entropy alloy at cryogenic temperature and room temperature. Met. Mater. Int. 27, 2300–2309 (2020)

    Article  Google Scholar 

  17. D. Wei, X. Li, S. Schönecker, J. Jiang, W.-M. Choi, B.-J. Lee, H.S. Kim, A. Chiba, H. Kato, Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys. Acta Mater. 181, 318–330 (2019)

    Article  CAS  Google Scholar 

  18. J. Moon, O. Bouaziz, H.S. Kim, Y. Estrin, Twinning engineering of a CoCrFeMnNi high-entropy alloy. Scr. Mater. 197, 113808 (2021)

    Article  CAS  Google Scholar 

  19. J.W. Won, S. Lee, S.H. Park, M. Kang, K.R. Lim, C.H. Park, Y.S. Na, Ultrafine-grained CoCrFeMnNi high-entropy alloy produced by cryogenic multi-pass caliber rolling. J. Alloys Compd. 742, 290–295 (2018)

    Article  CAS  Google Scholar 

  20. X. Ma, J. Chen, X. Wang, Y. Xu, Y. Xue, Microstructure and mechanical properties of cold drawing CoCrFeMnNi high entropy alloy. J. Alloys Compd. 795, 45–53 (2019)

    Article  CAS  Google Scholar 

  21. B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258–268 (2015)

    Article  CAS  Google Scholar 

  22. S. Sun, Y. Tian, H. Lin, H. Yang, X. Dong, Y. Wang, Z. Zhang, Achieving high ductility in the 1.7 GPa grade CoCrFeMnNi high-entropy alloy at 77 K. Mater. Sci. Eng. A 740, 336–341 (2019)

    Article  Google Scholar 

  23. J. Gu, M. Song, Annealing-induced abnormal hardening in a cold rolled CrMnFeCoNi high entropy alloy. Scr. Mater. 162, 345–349 (2019)

    Article  CAS  Google Scholar 

  24. M.S. Mehranpour, H. Shahmir, A. Derakhshandeh, M. Nili-Ahmadabadi, Significance of Ti addition on precipitation in CoCrFeNiMn high-entropy alloy. J. Alloys Compd. 888, 161530 (2021)

    Article  CAS  Google Scholar 

  25. S. Sun, Y. Tian, H. Lin, X. Dong, Y. Wang, Z. Zhang, Z. Zhang, Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure. Mater. Des. 133, 122–127 (2017)

    Article  CAS  Google Scholar 

  26. S. Sun, Y. Tian, H. Lin, X. Dong, Y. Wang, Z. Wang, Z. Zhang, Temperature dependence of the Hall–Petch relationship in CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 806, 992–998 (2019)

    Article  CAS  Google Scholar 

  27. J. Gu, S. Ni, Y. Liu, M. Song, Regulating the strength and ductility of a cold rolled FeCrCoMnNi high-entropy alloy via annealing treatment. Mater. Sci. Eng. A 755, 289–294 (2019)

    Article  CAS  Google Scholar 

  28. Z. Li, L. Fu, H. Zheng, R. Yu, L. Lv, Y. Sun, X. Dong, A. Shan, Effect of annealing temperature on microstructure and mechanical properties of a severe cold-rolled FeCoCrNiMn high-entropy alloy. Metall. Mater. Trans. A 50(7), 3223–3237 (2019)

    Article  CAS  Google Scholar 

  29. M. Klimova, D. Shaysultanov, S. Zherebtsov, N. Stepanov, Effect of second phase particles on mechanical properties and grain growth in a CoCrFeMnNi high entropy alloy. Mater. Sci. Eng. A 748, 228–235 (2019)

    Article  CAS  Google Scholar 

  30. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications. Science 345(6201), 1153–1158 (2014)

    Article  CAS  Google Scholar 

  31. G. Laplanche, A. Kostka, O. Horst, G. Eggeler, E. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 118, 152–163 (2016)

    Article  CAS  Google Scholar 

  32. S.-H. Joo, H. Kato, M. Jang, J. Moon, C. Tsai, J. Yeh, H. Kim, Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng. A 689, 122–133 (2017)

    Article  CAS  Google Scholar 

  33. J.-Y. Lee, J.-S. Hong, S.-H. Kang, Y.-K. Lee, The effect of austenite grain size on deformation mechanism of Fe–17Mn steel. Mater. Sci. Eng. A 809, 140972 (2021)

    Article  CAS  Google Scholar 

  34. P. Asghari-Rad, P. Sathiyamoorthi, J.W. Bae, J. Moon, J.M. Park, A. Zargaran, H.S. Kim, Effect of grain size on the tensile behavior of V10Cr15Mn5Fe35Co10Ni25 high entropy alloy. Mater. Sci. Eng. A 744, 610–617 (2019)

    Article  CAS  Google Scholar 

  35. Y. Tian, L. Zhao, S. Chen, A. Shibata, Z. Zhang, N. Tsuji, Significant contribution of stacking faults to the strain hardening behavior of Cu-15% Al alloy with different grain sizes. Sci. Rep. 5(1), 1–9 (2015)

    Article  CAS  Google Scholar 

  36. A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater Sci. 53(6), 893–979 (2008)

    Article  CAS  Google Scholar 

  37. R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater. Sci. Eng. A 528(28), 8198–8204 (2011)

    Article  CAS  Google Scholar 

  38. M.S. Mehranpour, H. Shahmir, M. Nili-Ahmadabadi, CoCrFeNiMn high entropy alloy microstructure and mechanical properties after severe cold shape rolling and annealing. Mater. Sci. Eng. A 793, 139884 (2020)

    Article  CAS  Google Scholar 

  39. M.S. Mehranpour, H. Shahmir, M. Nili-Ahmadabadi, Precipitation kinetics in heavily deformed CoCrFeNiMn high entropy alloy. Mater. Lett. 288, 129359 (2021)

    Article  CAS  Google Scholar 

  40. N. Stepanov, D. Shaysultanov, M. Ozerov, S. Zherebtsov, G. Salishchev, Second phase formation in the CoCrFeNiMn high entropy alloy after recrystallization annealing. Mater. Lett. 185, 1–4 (2016)

    Article  CAS  Google Scholar 

  41. H. Shahmir, T. Mousavi, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing. Mater. Sci. Eng. A 705, 411–419 (2017)

    Article  CAS  Google Scholar 

  42. F. Najafkhani, S. Kheiri, B. Pourbahari, H. Mirzadeh, Recent advances in the kinetics of normal/abnormal grain growth: a review. Arch. Civ. Mech. Eng. 21(1), 1–20 (2021)

    Article  Google Scholar 

  43. X.-M. Chen, Y. Lin, F. Wu, EBSD study of grain growth behavior and annealing twin evolution after full recrystallization in a nickel-based superalloy. J. Alloys Compd. 724, 198–207 (2017)

    Article  CAS  Google Scholar 

  44. M. Naghizadeh, H. Mirzadeh, Elucidating the effect of alloying elements on the behavior of austenitic stainless steels at elevated temperatures. Metall. Mater. Trans. A 47(12), 5698–5703 (2016)

    Article  CAS  Google Scholar 

  45. P. Bhattacharjee, G. Sathiaraj, M. Zaid, J. Gatti, C. Lee, C.-W. Tsai, J.-W. Yeh, Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 587, 544–552 (2014)

    Article  CAS  Google Scholar 

  46. G. Sathiaraj, C. Tsai, J. Yeh, M. Jahazi, P.P. Bhattacharjee, The effect of heating rate on microstructure and texture formation during annealing of heavily cold-rolled equiatomic CoCrFeMnNi high entropy alloy. J. Alloys Compd. 688, 752–761 (2016)

    Article  CAS  Google Scholar 

  47. G.D. Sathiaraj, P.P. Bhattacharjee, Effect of cold-rolling strain on the evolution of annealing texture of equiatomic CoCrFeMnNi high entropy alloy. Mater. Charact. 109, 189–197 (2015)

    Article  CAS  Google Scholar 

  48. G.D. Sathiaraj, P.P. Bhattacharjee, C.-W. Tsai, J.-W. Yeh, Effect of heavy cryo-rolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy. Intermetallics 69, 1–9 (2016)

    Article  CAS  Google Scholar 

  49. H. Shahmir, M.S. Mehranpour, A. Derakhshandeh, M. Nili-Ahmadabadi, Microstructure tailoring to enhance mechanical properties in CoCrFeNiMn high-entropy alloy by Ti addition and thermomechanical treatment. Mater. Charact. 182, 111513 (2021)

    Article  CAS  Google Scholar 

  50. O. Ivasishin, S. Shevchenko, S. Semiatin, Effect of crystallographic texture on the isothermal beta grain-growth kinetics of Ti–6Al–4V. Mater. Sci. Eng. A 332(1–2), 343–350 (2002)

    Article  Google Scholar 

  51. Z. Huda, T. Zaharinie, Kinetics of grain growth in 2024-T3: an aerospace aluminum alloy. J. Alloys Compd. 478(1–2), 128–132 (2009)

    Article  CAS  Google Scholar 

  52. J.J. Bhattacharyya, S. Agnew, G. Muralidharan, Texture enhancement during grain growth of magnesium alloy AZ31B. Acta Mater. 86, 80–94 (2015)

    Article  CAS  Google Scholar 

  53. G. Azizi, H. Mirzadeh, M. HabibiParsa, Unraveling the effect of homogenization treatment on decomposition of austenite and mechanical properties of low-alloyed TRIP steel. Steel Res. Int. 87(7), 820–823 (2016)

    Article  CAS  Google Scholar 

  54. W. Liu, Y. Wu, J. He, T. Nieh, Z. Lu, Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 68(7), 526–529 (2013)

    Article  CAS  Google Scholar 

  55. M. Vaidya, A. Anupam, J.V. Bharadwaj, C. Srivastava, B. Murty, Grain growth kinetics in CoCrFeNi and CoCrFeMnNi high entropy alloys processed by spark plasma sintering. J. Alloys Compd. 791, 1114–1121 (2019)

    Article  CAS  Google Scholar 

  56. E. Hall, The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Lond. Sect. B 64(9), 747 (1951)

    Article  Google Scholar 

  57. H. Yu, Y. **n, M. Wang, Q. Liu, Hall–Petch relationship in Mg alloys: a review. J. Mater. Sci. Technol. 34(2), 248–256 (2018)

    Article  CAS  Google Scholar 

  58. M.S. Mehranpour, A. Heydarinia, M. Emamy, H. Mirzadeh, A. Koushki, R. Razi, Enhanced mechanical properties of AZ91 magnesium alloy by inoculation and hot deformation. Mater. Sci. Eng. A 802, 140667 (2020)

    Article  Google Scholar 

  59. M.J. Sohrabi, H. Mirzadeh, C. Dehghanian, Significance of martensite reversion and austenite stability to the mechanical properties and transformation-induced plasticity effect of austenitic stainless steels. J. Mater. Eng. Perform. 29, 3233–3234 (2020)

    Article  CAS  Google Scholar 

  60. J. Moon, O. Bouaziz, H.S. Kim, Y. Estrin, Twinning engineering of high-entropy alloys: an exercise in process optimization and modeling. Mater. Sci. Eng. A 822, 141681 (2021)

    Article  CAS  Google Scholar 

  61. E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Influence of grain size and stacking-fault energy on deformation twinning in fcc metals. Metall. Mater. Trans. A 30(5), 1223–1233 (1999)

    Article  Google Scholar 

  62. S.Y. Jo, J. Han, J.-H. Kang, S. Kang, S. Lee, Y.-K. Lee, Relationship between grain size and ductile-to-brittle transition at room temperature in Fe–18Mn–0.6 C–15 Si twinning-induced plasticity steel. J. Alloys Compd. 627, 374–382 (2015)

    Article  CAS  Google Scholar 

  63. M.J. Jang, D.-H. Ahn, J. Moon, J.W. Bae, D. Yim, J.-W. Yeh, Y. Estrin, H.S. Kim, Constitutive modeling of deformation behavior of high-entropy alloys with face-centered cubic crystal structure. Mater. Res. Lett. 5(5), 350–356 (2017)

    Article  CAS  Google Scholar 

  64. J.M. Park, J. Moon, J.W. Bae, M.J. Jang, J. Park, S. Lee, H.S. Kim, Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy. Mater. Sci. Eng. A 719, 155–163 (2018)

    Article  CAS  Google Scholar 

  65. S. Asgari, E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins. Metall. Mater. Trans. A 28(9), 1781–1795 (1997)

    Article  Google Scholar 

Download references

Funding

One of the authors was supported by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS (TGL). There was no other financial support.

Author information

Authors and Affiliations

Authors

Contributions

HS: Conceptualization, Methodology, Formal analysis, Visualization, Writing—original draft. MSM: Methodology, Data curation, Writing—original draft. SAS: Investigation, Formal analysis, Writing—review & editing. CSL: Supervision, Resources, Writing—review & editing. TGL: Supervision, Resources, Project administration, Writing—review & editing.

Corresponding author

Correspondence to Hamed Shahmir.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared of influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahmir, H., Mehranpour, M.S., Shams, S.A.A. et al. Grain Size Tailoring to Control Strain Hardening and Improve the Mechanical Properties of a CoCrFeNiMn High-Entropy Alloy. High Entropy Alloys & Materials 1, 72–83 (2023). https://doi.org/10.1007/s44210-022-00003-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44210-022-00003-7

Keywords

Navigation