Log in

Recovery and Grain Growth Behavior of CoCrFeMnNi High Entropy Alloy

  • Recent Advances in Multicomponent Alloys and Ceramics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Single FCC CoCrFeMnNi with a mass of 1 kg was fabricated by vacuum levitation melting + casting. Lattice distortion caused by cold-rolling (CR) increases with thickness reduction ratio R (20%, 40%, 60% and 80%) and decreases in subsequent annealing. The recovery at 923–1023 K and grain growth at 1073–1273 K is systematically investigated. Nonlinear fitting methods are applied to study the recovery and grain growth kinetics, in which the equilibrium microhardness at a definite recovery temperature and initial grain size before the onset of grain growth are required to be fitted. The recovery activation energies of 60% and 80% CRed alloys are 148.91 kJ/mol and 155.1 kJ/mol, respectively, while the fitted equilibrium microhardness decreases with increasing T. Although satisfactory nonlinear fitted results of dn ~ 1/T curves, where d is grain size, can be obtained for both n = 2 and 3, the classic mechanism with n = 2 and lower activation energy (254 kJ/mol) are mainly responsible for grain growth. In all, the recovery at 923–1023 K is caused by dislocation (viscous) slide while the grain growth at 1073–1273 K can be mainly controlled by GB migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data used in this study are available from the authors on request.

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 https://doi.org/10.1002/adem.200300567 (2004).

    Article  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213. https://doi.org/10.1016/j.msea.2003.10.257 (2004).

    Article  Google Scholar 

  3. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science 345, 1153. https://doi.org/10.1126/science.1254581 (2014).

    Article  Google Scholar 

  4. Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, and Z.P. Lu, Nature 563, 546. https://doi.org/10.1038/s41586-018-0834-3 (2018).

    Article  Google Scholar 

  5. T.K. Tsao, A.C. Yeh, C.M. Kuo, K. Kakehi, H. Murakami, J.W. Yeh, and S.R. Jian, Sci. Rep. 7, 12658. https://doi.org/10.1038/s41598-017-13026-7 (2017).

    Article  Google Scholar 

  6. Z.J. Zhang, M.M. Mao, J.W. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, and R.O. Ritchie, Nat. Commun. 6, 10143. https://doi.org/10.1038/ncomms10143 (2015).

    Article  Google Scholar 

  7. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, Acta mater. 61, 5743. https://doi.org/10.1016/j.actamat.2013.06.018 (2013).

    Article  Google Scholar 

  8. E.P. George, D. Raabe, and R.O. Ritchie, Nat. Rev. Mater. 4, 515. https://doi.org/10.1038/s41578-019-0121-4 (2019).

    Article  Google Scholar 

  9. L. Rogal, D. Kalita, and L. Litynska-Dobrzynska, Intermetallics 86, 104. https://doi.org/10.1016/j.intermet.2017.03.019 (2017).

    Article  Google Scholar 

  10. B. Li, B. Qian, Y. Xu, Z.Y. Liu, and F.Z. Xuan, Mater. Letters 252, 88. https://doi.org/10.1016/j.matlet.2019.05.108 (2019).

    Article  Google Scholar 

  11. J. Gu, S. Ni, Y. Liu, and M. Song, Mater. Sci. Eng. A 755, 289. https://doi.org/10.1016/j.msea.2019.04.025 (2019).

    Article  Google Scholar 

  12. Q.F. Ye, K. Feng, Z.G. Li, F.G. Lu, R.F. Li, J. Huang, and Y.X. Wu, Appl. Surf. Sci. 396, 1420. https://doi.org/10.1016/j.apsusc.2016.11.176 (2017).

    Article  Google Scholar 

  13. Z.L. Xu, H. Zhang, X.J. Du, Y.Z. He, H. Luo, G.S. Song, L. Mao, T.W. Zhou, and L.L. Wang, Corros. Sci. 177, 108954. https://doi.org/10.1016/j.corsci.2020.108954 (2020).

    Article  Google Scholar 

  14. F. Otto, A. Dlouhy, K.G. Pradeep, M. Kubenova, D. Raabe, G. Eggeler, and E.P. George, Acta Mater. 112, 40. https://doi.org/10.1016/j.actamat.2016.04.005 (2016).

    Article  Google Scholar 

  15. W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, and Z.P. Lu, Scripta Mater. 68, 526. https://doi.org/10.1016/j.scriptamat.2012.12.002 (2013).

    Article  Google Scholar 

  16. P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid, J.R. Gatti, C. Lee, C.W. Tsai, and J.W. Yeh, J. Alloys Compd. 587, 544. https://doi.org/10.1016/j.jallcom.2013.10.237 (2014).

    Article  Google Scholar 

  17. F. Otto, N.L. Hanold, and E.P. George, Intermetallics 54, 39. https://doi.org/10.1016/j.intermet.2014.05.014 (2014).

    Article  Google Scholar 

  18. M. Vaidya, A. Anupam, J.V. Bharadwaj, C. Srivastava, and B.S. Murty, J. Alloys Compd. 791, 1114. https://doi.org/10.1016/j.jallcom.2019.03.341 (2019).

    Article  Google Scholar 

  19. C.H. Song, G.J. Li, G. Li, G.P. Zhang, and B. Cai, Micron 150, 103144. https://doi.org/10.1016/j.micron.2021.103144 (2021).

    Article  Google Scholar 

  20. J.B. Nelson, and D. Riley, Proc. Phys. Soc. 57, 160. https://doi.org/10.1088/0959-5309/57/3/302 (1945).

    Article  Google Scholar 

  21. S. Varalakshmi, M. Kamaraj, and B.S. Murty, J. Alloys Compd. 460, 253. https://doi.org/10.1016/j.jallcom.2007.05.104 (2008).

    Article  Google Scholar 

  22. K.J. Lu, A. Chauhan, D. Litvinov, M. Walter, A.S. Tirunilai, J. Freudenberger, A. Kauffmann, M. Heilmaier, and J. Aktaa, Mater. Sci. Eng. A 791, 139781. https://doi.org/10.1016/j.msea.2020.139781 (2020).

    Article  Google Scholar 

  23. M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, and S.V. Divinski, Acta Mater. 146, 211. https://doi.org/10.1016/j.actamat.2017.12.052 (2018).

    Article  Google Scholar 

  24. F.J. Humphreys, and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Elsevier, Oxford, 2004), pp 333–378.

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974316 and U2004167). We really appreciate the Center of Advanced Analysis & Gene Sequencing, Zhengzhou University for its equipment support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Cai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 883 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Lu, F., Li, G. et al. Recovery and Grain Growth Behavior of CoCrFeMnNi High Entropy Alloy. JOM 74, 4271–4279 (2022). https://doi.org/10.1007/s11837-022-05436-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05436-4

Navigation