Log in

Constitutive Modeling with Critical Twinning Stress in CoCrFeMnNi High Entropy Alloy at Cryogenic Temperature and Room Temperature

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Constitutive modeling of CoCrFeMnNi high-entropy alloy (HEA) at cryogenic temperature (77 K) and room temperature (293 K) has been investigated. The effect of temperature on deformation behavior such as twinning, forest hardening, and back stress hardening has been established. The enhanced ductility and strength of CoCrFeMnNi HEA at 77 K are due the combination of sub-grain structure, twinning, and dislocations. This phenomenon is explained in terms of quantitative values of twin volume fraction, inter-twin spacing, and dislocation density. The isotropic kinematic constitutive model is constructed with a critical twinning stress parameter to obtain the criteria for twinning initiation. The developed finite element model simulation results at 77 K and 293 K are in good agreement with the experimental data. The model displays a smooth increase in the twin volume fraction until fracture point (maximum twin fraction region). Also, different modeling parameters are obtained for each temperature to account for the changing deformation behavior.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

The experimental results are adopted from Ref.[17]

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)

    Article  CAS  Google Scholar 

  2. D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017)

    Article  CAS  Google Scholar 

  3. Y. Zhang, T.T. Zuo, Z. Tang, M. Gao, K. Dahmen, P. Kiaw, Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014)

    Article  Google Scholar 

  4. S. Huang, W. Li, S. Lu, Scr. Mater. 108, 44 (2015)

    Article  CAS  Google Scholar 

  5. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61, 5743 (2013)

    Article  CAS  Google Scholar 

  6. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)

    Article  CAS  Google Scholar 

  7. Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81, 428 (2014)

    Article  CAS  Google Scholar 

  8. T.K. Liu, Z. Wu, A.D. Stoica, Q. **e, W. Wu, Y.F. Gao, H. Bei, K. An, Mater. Des. 131, 419 (2017)

    Article  CAS  Google Scholar 

  9. B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142, 283 (2018)

    Article  Google Scholar 

  10. O. Bouaziz, N. Guelton, Mater. Sci. Eng. A 319–321, 246 (2001)

    Article  Google Scholar 

  11. O. Bouaziz, S. Allain, C. Scott, Scr. Mater. 58, 484 (2008)

    Article  CAS  Google Scholar 

  12. D. Steinmetz, T. Japel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, D. Raabe, Acta Mater. 61, 494 (2013)

    Article  CAS  Google Scholar 

  13. V. Tari, A. Rollett, H.E. Kadiri, H. Beladi, A. Oppendal, R. King, IOP Sci. 23, 1 (2015)

    CAS  Google Scholar 

  14. M.J. Jang, D.H. Ahn, J. Moon, J.W. Bae, D. Yim, J. Yeh, Y. Estrin, H.S. Kim, Mater. Res. Lett. 5, 350 (2017)

    Article  CAS  Google Scholar 

  15. M.J. Jang, H. Kwak, Y.W. Lee, Y. Jeong, J. Choi, Y.H. Jo, W. Choi, H.J. Sung, E.Y. Yoon, S. Praveen, S. Lee, B. Lee, M.I.A. El Aal, H.S. Kim, Met. Mater. Int. 25, 277 (2019)

    Article  CAS  Google Scholar 

  16. G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, E.P. George, Acta Mater. 118, 152 (2016)

    Article  CAS  Google Scholar 

  17. J. Moon, S.I. Hong, J.W. Bae, M.J. Jang, D. Yim, H.S. Kim, Mater. Res. Lett. 5, 472 (2017)

    Article  CAS  Google Scholar 

  18. T. Cai, Z.J. Zhang, P. Zhang, J.B. Yang, Z.F. Zhang, J. Appl. Phys. 116, 163512 (2014)

    Article  Google Scholar 

  19. X.R. Guo, C.Y. Sun, R. Li, N. Guo, Y.C. Wei, Z.X. Su, S.P. Yan, Comput. Mater. Sci. 139, 8 (2017)

    Article  CAS  Google Scholar 

  20. A.G. Crocker, Acta Mater. 10, 113 (1962)

    Article  CAS  Google Scholar 

  21. S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Wang, Z.F. Zhang, Mater. Sci. Eng. A 712, 603 (2018)

    Article  CAS  Google Scholar 

  22. Z.Y. Liang, X. Wang, W. Huang, M.X. Huang, Acta Mater. 88, 170 (2015)

    Article  CAS  Google Scholar 

  23. M. Khedr, L. Wei, M. Na, L. Yu, J. Xuejun, JOM 71, 1338 (2019)

    Article  CAS  Google Scholar 

  24. I. Gutierrez-Urritia, D. Raabe, Scr. Mater. 66, 992 (2012)

    Article  Google Scholar 

  25. P. Asghari-Rad, P. Sathiyamoorthi, J.W. Bae, J. Moon, J.M. Park, A. Zargaran, H.S. Kim, Mater. Sci. Eng. A 744, 610 (2019)

    Article  CAS  Google Scholar 

  26. C.W. Sinclair, W.J. Poole, Y. Bréchet, Scr. Mater. 55, 739 (2006)

    Article  CAS  Google Scholar 

  27. G.H. Zhao, X. Xu, D. Dye, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 183, 155 (2020)

    Article  Google Scholar 

  28. L. Patriarca, A. Ojha, H. Sehitoglu, Y.I. Chumlyakov, Scr. Mater. 112, 54 (2016)

    Article  CAS  Google Scholar 

  29. G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, E.P. George, J. Alloys Compd. 623, 348 (2015)

    Article  CAS  Google Scholar 

  30. M.A. Meyers, O. Vöhringer, V.A. Lubarda, Acta Mater. 49, 4025 (2001)

    Article  CAS  Google Scholar 

  31. A. Kundu, D.P. Field, Metal. Mater. Trans. A 49, 3274 (2018)

    Article  CAS  Google Scholar 

  32. P. Asghari-Rad, P. Sathiyamoorthi, N.T. Nguyen, J.W. Bae, H. Shahmir, H.S. Kim, Mater. Sci. Eng. A 771, 138604 (2020)

    Article  CAS  Google Scholar 

  33. S.H. Joo, H. Kato, M.J. Jang, J. Moon, C.W. Tsai, J.W. Yeh, H.S. Kim, Mater. Sci. Eng. A 689, 122 (2017)

    Article  CAS  Google Scholar 

  34. L. Zhu, H. Ruan, X. Li, M. Dao, H. Gao, J. Lu, Acta Mater. 59, 5544 (2011)

    Article  CAS  Google Scholar 

  35. L. Rémy, Metall. Trans. A Phys. Metall. Mater. Sci. 12A, 387 (1981)

    Article  Google Scholar 

  36. F. Liu, W.J. Dan, W.G. Zhang, Mater. Des. 65, 737 (2015)

    Article  CAS  Google Scholar 

  37. J. Moon, S.I. Hong, J.B. Seol, J.W. Bae, J.M. Park, H.S. Kim, Mater. Res. Lett. 7, 503 (2019)

    Article  CAS  Google Scholar 

  38. F.F. Lavrentev, Mater. Sci. Eng. 46, 191 (1980)

    Article  CAS  Google Scholar 

  39. J.G. Kim, M.J. Jang, H.K. Park, K.G. Chin, S. Lee, H.S. Kim, Met. Mater. Int. 25, 912 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Future Material Discovery Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) of Korea (2016M3D1A1023384).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Seop Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Park, H.K., Asghari-Rad, P. et al. Constitutive Modeling with Critical Twinning Stress in CoCrFeMnNi High Entropy Alloy at Cryogenic Temperature and Room Temperature. Met. Mater. Int. 27, 2300–2309 (2021). https://doi.org/10.1007/s12540-020-00818-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00818-2

Keywords

Navigation