Log in

Composite TiO2 films modified by CeO2 and SiO2 for the photocatalytic removal of water pollutants

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

TiO2 particles of high photocatalytic activity immobilised on various substrates usually suffer from low mechanical stability. This can be overcome by the utilisation of an inorganic binder and/or incorporation in a robust hydrophobic matrix based on rare-earth metal oxides (REOs). Furthermore, intrinsic hydrophobicity of REOs may result in an increased affinity of TiO2-REOs composites to non-polar aqueous pollutants. Therefore, in the present work, three methods were used for the fabrication of composite TiO2/CeO2 films for photocatalytic removal of dye Acid Orange 7 and the herbicide monuron, as representing polar and non-polar pollutants, respectively. In the first method, the composition of a paste containing photoactive TiO2 particles and CeCl3 or Ce(NO3)3 as CeO2 precursors was optimised. This paste was deposited on glass by doctor blading. The second method consisted of the deposition of thin layers of CeO2 by spray coating over a particulate TiO2 photocatalyst layer (prepared by drop casting or electrophoresis). Both approaches lead to composite films of similar photoactivity that of the pure TiO2 layer, nevertheless films made by the first approach revealed better mechanical stability. The third method comprised of modifying a particulate TiO2 film by an overlayer based on colloidal SiO2 and tetraethoxysilane serving as binders, TiO2 particles and cerium oxide precursors at varying concentrations. It was found that such an overlayer significantly improved the mechanical properties of the resulting coating. The use of cerium acetylacetonate as a CeO2 precursor showed only a small increase in photocatalytic activity. On the other hand, deposition of SiO2/TiO2 dispersions containing CeO2 nanoparticles resulted in significant improvement in the rate of photocatalytic removal of the herbicide monuron.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ohtani, B., Prieto-Mahaney, O. O., Li, D., & Abe, R. (2010). What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry, 216, 179–182.

    Article  CAS  Google Scholar 

  2. Azimi, G., Kwon, H.-M., & Varanasi, K. K. (2014). Superhydrophobic surfaces by laser ablation of rare-earth oxide ceramics. MRS Communications, 4, 95–99.

    Article  CAS  Google Scholar 

  3. Bai, M., Kazi, H., Zhang, X., Liu, J., & Hussain, T. (2018). Robust hydrophobic surfaces from suspension HVOF thermal sprayed rare-earth oxide ceramics coatings. Science and Reports, 8, 1–8.

    Google Scholar 

  4. Fronzi, M., Assadi, M. H. N., & Hanaor, D. A. (2019). Theoretical insights into the hydrophobicity of low index CeO2 surfaces. Applied Surface Science, 478, 68–74.

    Article  CAS  Google Scholar 

  5. Azimi, G., Dhiman, R., Kwon, H.-M., Paxson, A. T., & Varanasi, K. K. (2013). Hydrophobicity of rare-earth oxide ceramics. Nature materials, 12, 315–320.

    Article  CAS  Google Scholar 

  6. Liang, J., Hu, Y., Fan, Y., & Chen, H. (2013). Formation of superhydrophobic cerium oxide surfaces on aluminum substrate and its corrosion resistance properties. Surface and interface analysis, 45, 1211–1216.

    Article  CAS  Google Scholar 

  7. P. Singh, K. Srivatsa, On the wettability and optical properties of nanocrystalline CeO 2 thin films, (2016).

  8. Lundy, R., Byrne, C., Bogan, J., Nolan, K., Collins, M. N., Dalton, E., & Enright, R. (2017). Exploring the role of adsorption and surface state on the hydrophobicity of rare earth oxides. ACS applied materials & interfaces, 9, 13751–13760.

    Article  CAS  Google Scholar 

  9. Fu, S.-P., Rossero, J., Chen, C., Li, D., Takoudis, C. G., & Abiade, J. T. (2017). On the wetting behavior of ceria thin films grown by pulsed laser deposition. Applied Physics Letters, 110, 081601.

    Article  Google Scholar 

  10. Muñoz-Batista, M. J., Gómez-Cerezo, M. N., Kubacka, A., Tudela, D., & Fernández-García, M. (2014). Role of interface contact in CeO2–TiO2 photocatalytic composite materials. ACS Catalysis, 4, 63–72.

    Article  Google Scholar 

  11. Wang, X., **, Y., & Liang, X. (2017). Significant photocatalytic performance enhancement of TiO2 by CeO2 atomic layer deposition. Nanotechnology, 28, 505709.

    Article  Google Scholar 

  12. Paušová, Š, Riva, M., Baudys, M., Krýsa, J., Barbieriková, Z., & Brezová, V. (2019). Composite materials based on active carbon/TiO2 for photocatalytic water purification. Catalysis Today, 328, 178–182.

    Article  Google Scholar 

  13. Waldner, G., & Krysa, J. (2005). Photocurrents and degradation rates on particulate TiO2 layers effect of layer thickness, concentration of oxidizable substance and illumination direction. Electrochimica Acta, 50, 4498–4504.

    Article  CAS  Google Scholar 

  14. Souza, J., Silva, A., & Paes, H. (2007). Synthesis and characterization of CeO 2 thin films deposited by spray pyrolysis. Journal of Materials Science-materials in Electronics - J MATER SCI-MATER ELECTRON, 18, 951–956.

    Article  CAS  Google Scholar 

  15. Konstantinov, K., Stambolova, I., Peshev, P., Darriet, B., & Vassilev, S. (2000). Preparation of ceria films by spray pyrolysis method. International Journal of Inorganic Materials, 2, 277–280.

    Article  CAS  Google Scholar 

  16. Silva, T. G., Ferreira, A., Ribeiro, E., Silveira, E., & Mattoso, N. (2015). Low-defect CeO2 films synthesis by combined spray pyrolysis using different precursors. Applied Physics A, 118, 1489–1494.

    Article  CAS  Google Scholar 

  17. Wang, S., Wang, W., Liu, Q., Zhang, M., & Qian, Y. (2000). Preparation and characterization of cerium (IV) oxide thin films by spray prolysis method. Solid State Ionics, 133, 211–215.

    Article  CAS  Google Scholar 

  18. Elidrissi, B., Addou, M., Regragui, M., Monty, C., Bougrine, A., & Kachouane, A. (2000). Structural and optical properties of CeO2 thin films prepared by spray pyrolysis. Thin Solid Films, 379, 23–27.

    Article  CAS  Google Scholar 

  19. Liu, B., Zhao, X., Zhang, N., Zhao, Q., He, X., & Feng, J. (2005). Photocatalytic mechanism of TiO2–CeO2 films prepared by magnetron sputtering under UV and visible light. Surface Science, 595, 203–211.

    Article  CAS  Google Scholar 

  20. Zlamal, M., Krysa, J., & Jirkovsky, J. (2009). Photocatalytic degradation of acid orange 7 on TiO2 films prepared from various powder catalysts. Catalysis Letters, 133, 160–166.

    Article  CAS  Google Scholar 

  21. Krýsa, J., Paušová, Š, Zlámal, M., & Mills, A. (2012). Photoactivity assessment of TiO2 thin films using acid orange 7 and 4-chlorophenol as model compounds. Part I: key dependencies. Journal of Photochemistry and Photobiology A: Chemistry, 250, 66–71.

    Article  Google Scholar 

  22. Krysa, J., Waldner, G., Mest’ankova, H., Jirkovsky, J., & Grabner, G. (2006). Photocatalytic degradation of model organic pollutants on an immobilized particulate TiO2 layer - roles of adsorption processes and mechanistic complexity. Applied Catalysis B-Environmental, 64, 290–301.

    Article  CAS  Google Scholar 

  23. Nussbaum, M., Shaham-Waldmann, N., & Paz, Y. (2014). Synergistic photocatalytic effect in Fe Nb-doped BiOCl. J Photoch Photobio A, 290, 11–21.

    Article  CAS  Google Scholar 

  24. Arbell, N., Bauer, K., & Paz, Y. (2021). Kinetic resolution of racemic mixtures via enantioselective photocatalysis. Acs Applied Materials & Interfaces, 13, 39781–39790.

    Article  CAS  Google Scholar 

  25. O. Toker, J. Krysa, Y. Paz, The Effect of Modifying TiO2 with Lanthanides on the Photocatalytic Degradation of Ciprofloxacin, a Hydrophobic Compound, Journal of Photocatalysis, (2022) accepted.

  26. Haick, H., & Paz, Y. (2001). Remote photocatalytic activity as probed by measuring the degradation of self-assembled monolayers anchored near microdomains of titanium dioxide. The Journal of Physical Chemistry B, 105, 3045–3051.

    Article  CAS  Google Scholar 

  27. Anderson, C., & Bard, A. J. (1995). An Improved photocatalyst of TiO2/SiO2 prepared by a Sol-Gel synthesis. The Journal of Physical Chemistry, 99, 9882–9885.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sport of the Czech Republic (project LTAIZ19011) and by the Israeli Ministry of Science (grant No. 3-16075).

Funding

Ministerstvo Školství, Mládeže a Tělovýchovy, LTAIZ19011, Josef Krysa, Israeli Ministry of Science, No. 3-16075, Yaron Paz

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Krýsa.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4062 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusek, J., Baudys, M., Toker, O. et al. Composite TiO2 films modified by CeO2 and SiO2 for the photocatalytic removal of water pollutants. Photochem Photobiol Sci 21, 2127–2138 (2022). https://doi.org/10.1007/s43630-022-00283-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00283-3

Keywords

Navigation