Log in

CeO2–TiO2 mixed oxide thin films with enhanced photocatalytic degradation of organic pollutants

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A series of CeO2–TiO2 mixed oxides were prepared by the peroxo sol–gel method. X-ray diffraction, transmission electron microscopy, ultraviolet–visible spectroscopy, atomic force microscopy, and X-ray photoelectron spectroscopy were used to investigate the characteristics of CeO2–TiO2 sols and thin films in order to determine the influence of adding CeO2 to TiO2 on the photocatalytic degradation of methylene blue aqueous solution under both ultraviolet and visible light irradiation. The pH values of the as-prepared CeO2–TiO2 sols were neutral; the as-prepared sols contained nanocrystals in colloidal suspensions, and there was no subsequent calcination process. It was observed that the highest photocatalytic degradation activities with respect to methylene blue under both UV and visible light irradiation were exhibited for an optimum CeO2–TiO2 weight ratio of 0.05. The high photocatalytic activity was because of changes in the spectral absorption of material, which was attributed to the heterojunction formed by TiO2 and CeO2 networks via Ti–O–Ce bonds after addition of CeO2. Thus, the presence of CeO2 in TiO2 significantly enhanced the photocatalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1:1–21

    Article  Google Scholar 

  2. Chong MN, ** B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  Google Scholar 

  3. Teoh WY, Scott JA, Amal R (2012) Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J Phys Chem Lett 3:629–639

    Article  Google Scholar 

  4. He H, Liu C, Dubois KD, ** T, Louis ME, Li G (2012) Enhanced charge separation in nanostructured TiO2 materials for photocatalytic and photovoltaic applications. Ind Eng Chem Res 51:11841–11849

    Article  Google Scholar 

  5. Chen YW, Chang JY, Moongraksathum B (2015) Preparation of vanadium-doped titanium dioxide neutral sol and its photocatalytic applications under UV light irradiation. J Taiwan Inst Chem Eng 52:140–146

    Article  Google Scholar 

  6. Moongraksathum B, Hsu PT, Chen YW (2016) Photocatalytic activity of ascorbic acid-modified TiO2 sol prepared by the peroxo sol–gel method. J Solgel Sci Technol 78:647–659

    Article  Google Scholar 

  7. Ranjit KT, Willner I, Bossmann SH, Braun AM (2001) Lanthanide oxide-doped titanium dioxide photocatalysts: novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid. Environ Sci Technol 35:1544–1549

    Article  Google Scholar 

  8. Tong T, Zhang J, Tian B, Chen F, He D, Anpo M (2007) Preparation of Ce-TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity. J Colloid Interface Sci 315:382–388

    Article  Google Scholar 

  9. **e Y, Yuan C (2004) Visible light induced photocatalysis of cerium ion modified titania sol and nanocrystallites. J Mater Sci Technol 20:14–18

    Google Scholar 

  10. **e Y, Yuan C, Li X (2005) Photosensitized and photocatalyzed degradation of azo dye using Lnn+-TiO2 sol in aqueous solution under visible light irradiation. Mater Sci Eng B 117:325–333

    Article  Google Scholar 

  11. Magesh G, Viswanathan B, Viswanath RP, Varadarajan TK (2009) Photocatalytic behavior of CeO2-TiO2 system for the degradation of methylene blue. Indian J Chem 48:480–488

    Google Scholar 

  12. Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2–based materials. Chem Rev 116:5987–6041

    Article  Google Scholar 

  13. López T, Rojas F, Alexander-Katz R, Galindo F, Balankin A, Buljan A (2004) Porosity, structural and fractal study of sol-gel TiO2-CeO2 mixed oxides. J Solid State Chem 177:1873–1885

    Article  Google Scholar 

  14. Eskandarloo H, Badiei A, Behnajady MA (2014) TiO2/CeO2 hybrid photocatalyst with enhanced photocatalytic activity: optimization of synthesis variables. Ind Eng Chem Res 53:7847–7855

    Article  Google Scholar 

  15. Liu H, Wang M, Wang Y, Liang Y, Cao W, Su Y (2011) Ionic liquid-templated synthesis of mesoporous CeO2–TiO2 nanoparticles and their enhanced photocatalytic activities under UV or visible light. J Photochem Photobiol A Chem 223:157–164

    Article  Google Scholar 

  16. Liu Z, Guo B, Hong L, Jiang H (2005) Preparation and characterization of cerium oxide doped TiO2 nanoparticles. J Phys Chem Solids 66:161–167

    Article  Google Scholar 

  17. Liu B, Zhao X, Zhang N, Zhao Q, He X, Feng J (2005) Photocatalytic mechanism of TiO2-CeO2 films prepared by magnetron sputtering under UV and visible light. Surf Sci 595:203–211

    Article  Google Scholar 

  18. Contreras-García ME, García-Benjume ML, Macías-Andrés VI, Barajas-Ledesma E, Medina-Flores A, Espitia-Cabrera MI (2014) Synergic effect of the TiO2-CeO2 nanoconjugate system on the band-gap for visible light photocatalysis. Mater Sci Eng B 183:78–85

    Article  Google Scholar 

  19. Muñoz-Batista MJ, de los Milagros Ballari M, Kubacka A, Cassano AE, Alfano OM, Fernández-García M (2014) Acetaldehyde degradation under UV and visible irradiation using CeO2-TiO2 composite systems: evaluation of the photocatalytic efficiencies. Chem Eng J 255:297–306

    Article  Google Scholar 

  20. Gionco C, Giamello E, Mino L, Paganini MC (2014) The interaction of oxygen with the surface of CeO 2–TiO 2 mixed systems: an example of fully reversible surface-to-molecule electron transfer. Phys Chem Chem Phys 16:21438–21445

    Article  Google Scholar 

  21. Yang H, Zhang K, Shi R, Tang A (2007) Sol–gel synthesis and photocatalytic activity of CeO2 /TiO2 nanocomposites. J Am Ceram Soc 90:1370–1374

    Article  Google Scholar 

  22. Cai T, Liao Y, Peng Z, Long Y, Wei Z, Deng Q (2009) Photocatalytic performance of TiO2 catalysts modified by H3PW12O40, ZrO2 and CeO2. J Environ Sci 21:997–1004

    Article  Google Scholar 

  23. Mohammadi MR, Fray DJ (2010) Nanostructured TiO2-CeO2 mixed oxides by an aqueous sol-gel process: effect of Ce:Ti molar ratio on physical and sensing properties. Sens Actuators B Chem 150:631–640

    Article  Google Scholar 

  24. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  Google Scholar 

  25. Sasirekha N, Rajesh B, Chen YW (2009) Synthesis of TiO2 sol in a neutral solution using TiCl4 as a precursor and H2O2 as an oxidizing agent. Thin Solid Films 518:43–48

    Article  Google Scholar 

  26. Moongraksathum B, Chen YW (2016) Preparation and characterization of SiO2–TiO2 neutral sol by peroxo sol–gel method and its application on photocatalytic degradation. J Sol gel Sci Technol 77:288–297

    Article  Google Scholar 

  27. Fang J, Bi X, Si D, Jiang Z, Huang W (2007) Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides. Appl Surf Sci 253:8952–8961

    Article  Google Scholar 

  28. Monshi A, Foroughi MR, Monshi MR (2012) Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng 2:154–160

    Article  Google Scholar 

  29. Alexander L, Klug HP (1950) Determination of crystallite size with the X–ray spectrometer. J Appl Phys 21:137–142

    Article  Google Scholar 

  30. Jiang B, Zhang S, Guo X, ** B, Tian Y (2009) Preparation and photocatalytic activity of CeO2/TiO2 interface composite film. Appl Surf Sci 255:5975–5978

    Article  Google Scholar 

  31. Verma R, Samdarshi SK, Singh J (2015) Hexagonal ceria located at the interface of anatase/rutile TiO2 superstructure optimized for high activity under combined UV and visible-light irradiation. J Phys Chem C 119:23899–23909

    Article  Google Scholar 

  32. Yu T, Tan X, Zhao L, Yin Y, Chen P, Wei J (2010) Characterization, activity and kinetics of a visible light driven photocatalyst: cerium and nitrogen co-doped TiO2 nanoparticles. Chem Eng J 157:86–92

    Article  Google Scholar 

  33. **ao G, Huang X, Liao X, Shi B (2013) One-pot facile synthesis of cerium-doped TiO2 mesoporous nanofibers using collagen fiber as the biotemplate and its application in visible light photocatalysis. J Phys Chem C 117:9739–9746

    Article  Google Scholar 

  34. Dake LS, Lad RJ (1993) Electronic and chemical interactions at aluminum/TiO2 (110) interfaces. Surf Sci 289:297–306

    Article  Google Scholar 

  35. Zhou Y, Chen C, Wang N, Li Y, Ding H (2016) Stable Ti3+ self-doped anatase-rutile mixed TiO2 with enhanced visible light utilization and durability. J Phys Chem C 120:6116–6124

    Article  Google Scholar 

  36. **ong L, Li J, Yang B, Yu Y (2012) Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application. J Nanomater 2012:1–13

    Article  Google Scholar 

  37. Watanabe S, Ma X, Song C, Pennsyl V (2009) Characterization of structural and surface properties of nanocrystalline TiO2-CeO2 mixed oxides by XRD, XPS, TPR, and TPD. J Phys Chem C 113:14249–14257

    Article  Google Scholar 

  38. Burroughs P, Hamnett A, Orchard AF, Thornton G (1976) Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium. J Chem Soc Dalton Trans 17:1686–1698

    Article  Google Scholar 

  39. **e Y, Yuan C (2004) Characterization and photocatalysis of Eu3+–TiO2 sol in the hydrosol reaction system. Mater Res Bull 39:533–543

    Article  Google Scholar 

  40. Ghasemi S, Setayesh SR, Habibi-yangjeh A, Hormozi-nezhad MR, Gholami MR (2012) Assembly of CeO2–TiO2 nanoparticles prepared in room temperature ionic liquid on graphene nanosheets for photocatalytic degradation of pollutants. J Hazard Mater 199-200:170–178

    Article  Google Scholar 

  41. Liu T, Li X, Li F (2010) Enhanced photocatalytic activity of Ce3+–TiO2 hydrosols in aqueous and gaseous phases. Chem Eng J 157:475–482

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Science and Technology, Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Wen Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moongraksathum, B., Chen, YW. CeO2–TiO2 mixed oxide thin films with enhanced photocatalytic degradation of organic pollutants. J Sol-Gel Sci Technol 82, 772–782 (2017). https://doi.org/10.1007/s10971-017-4355-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4355-6

Keywords

Navigation