Log in

Brief review of malting quality and frontier areas in barley

  • Review
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Barley is an important coarse cereal, utilized for human food, animal fodder and malting and brewing purposes also having nutraceutical properties. Many gene(s), namely btr, vrs, Vrn, SD, Ppd, etc., contributed significantly in plant architecture improvement during domestication have been discussed here with the wild species of paramount importance, viz. H. lechleri, H. secalinum, H. spontaneum, H. procerum and H. marinum in this review. Barley malting process is majorly divided into three key steps: stee**, germination and kilning and further followed by mashing for wort production. All these processes are specific for temperature regimes, duration and moisture content. Several key enzymes are developed during germination phase, which are capable of breaking starch protein matrix and responsible for endosperm modification. On field traits like bold and plump kernels with other biochemical characters, namely grain starch, grain protein, β-glucan, diastatic power, free amino nitrogen, Kolbach index (KI), wort viscosity, malt extract and EPH were reviewed at genetic and molecular level and are presented here. Further, novel frontier breeding techniques of speed breeding and genome editing have been briefly discussed for develo** insight to the barley researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott DC, Brown AHD, Burdon JJ (1991) Genes for scald resistance from wild barley (Hordeum vulgare ssp spontaneum) and their linkage to isozyme markers. Euphytica 61(3):225–231

    Article  Google Scholar 

  • Atienza SG, Ramirez CM, Hernandez P, Martin A (2004) Chromosomal location of genes for carotenoid pigments in Hordeum chilense. Plant Br 123(3):303–304

    Article  CAS  Google Scholar 

  • Badr A, Rabey HE, Effgen S, Ibrahim HH, Pozzi C, Rohde W, Salamini F (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Bio Evol 17(4):499–510

    Article  CAS  Google Scholar 

  • Baik BK, Ullrich SE (2008) Barley for food: characteristics, improvement and renewed interest. J Cereal Sci 48(2):233–242

    Article  CAS  Google Scholar 

  • Bamforth CW, Kanauchi M (2001) A simple model for the cell wall of the starchy endosperm in barley. J Institute Brew 107(4):235–240

    Article  CAS  Google Scholar 

  • Barria BN, Copaja SV, Niemeyer HM (1992) Occurrence of diboa in wild Hordeum species and its relation to aphid resistance. Phytochemistry 31(1):89–91

    Article  CAS  Google Scholar 

  • Blake TK, Ullrich SE, Nilan RA (1982) Map** of the Hor-3 locus encoding D hordein in barley. Theor and Appl Genet 63(4):367–371

    Article  CAS  Google Scholar 

  • Bothmer VR, Sato K, Komatsuda T, Yasuda S, Fischbeck G (2003) The domestication of cultivated barley. In: Bothmer R, Van H, Knupffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier, Amsterdam, pp 9–27

    Chapter  Google Scholar 

  • Brennan CS, Harris N, Smith D, Shewry PR (1996) Structural differences in the mature endosperms of good and poor malting barley cultivars. J Cereal Sci 24(2):171–177

    Article  Google Scholar 

  • Briggs DE, Morrall P (1984) Endosperm breakdown in decorticated barley grains grown at 25° C on a wet substratum. J Institute Brew 90(6):363–370

    Article  Google Scholar 

  • Bringhurst TA (2015) 125th Anniversary Review: Barley research in relation to Scotch whisky production: a journey to new frontiers. J Institute Brew 121(1):1–18

    Article  Google Scholar 

  • Brown AT, Morrall P (1996) Determination of repeatability and reproducibility of a new rapid enzyme method for the determination of glycoside nitrile in malted barley. J Institute Brew 102(4):245–247

    Article  CAS  Google Scholar 

  • Budhagatapalli N, Rutten T, Gurushidze M, Kumlehn J, Hensel G (2015) Targeted modification of gene function exploiting homology-directed repair of TALEN-mediated double-strand breaks in barley. G3 Genes Genom Genet 5(9):1857–1863

    CAS  Google Scholar 

  • Bull H, Casao MC, Zwirek M, Flavell AJ, Thomas T, Guo W, Zhang R, Flores PR, Kyriakidis S, Russell J, Druka A, Mckim SM, Waugh R (2017) Barley SIX-ROWED SPIKE3 encodes a putative Jumonji C-type H3K9me2/me3 demethylase that represses lateral spikelet fertility. Nature Comm 8(1):1–9

    Article  CAS  Google Scholar 

  • Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin EJ, Bacic A, Fincher GB (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1, 3; 1, 4)-ß-D-glucans. Science 311(5769):1940–1942

    Article  CAS  PubMed  Google Scholar 

  • Burton RA, Jobling SA, Harvey AJ, Shirley NJ, Mather DE, Bacic A, Fincher GB (2008) The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Pl Physiology 146(4):1821–1833

    Article  CAS  Google Scholar 

  • Cai S, Yu G, Chen X, Huang Y, Jiang X, Zhang G, ** X (2013) Grain protein content variation and its association analysis in barley. BMC Pl Bio 13(1):1–11

    Google Scholar 

  • Cakir M, Poulsen D, Galwey NW, Ablett GA, Chalmers KJ, Platz GJ, Park RF et al (2003) Map** and QTL analysis of the barley population Tallon× Kaputar. Aus J Agril Res 54(12):1155–1162

    Article  Google Scholar 

  • Carciofi M, Blennow A, Jensen SL, Shaik SS, Henriksen A, Buleon A, Holm PB, Hebelstrup KH (2012) Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules. BMC Plant Biol 12(1):223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Gao C (2013) TALENs: customizable molecular DNA scissors for genome engineering of plants. J Genet Genomics 40(6):271–279

    Article  PubMed  Google Scholar 

  • Chen K, Gao C (2014) Targeted genome modification technologies and their applications in crop improvements. Pl Cell Rep 33(4):575–583

    Article  CAS  Google Scholar 

  • Chen G, Sagi M, Weining S, Krugman T, Fahima T, Korol AB, Nevo E (2004a) Wild barley eibi1 mutation identifies a gene essential for leaf water conservation. Planta 219(4):684–693

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Tamar K, Fahima T, Zhang F, Korol AB, Nevo E (2004b) Differential patterns of germination and desiccation tolerance of mesic and xeric wild barley (Hordeum spontaneum). Israel J Arid Env 56(1):95–105

    Article  CAS  Google Scholar 

  • Civan P, Brown TA (2017) A novel mutation conferring the non-brittle phenotype of cultivated barley. New Phytol 214(1):468–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clancy JA, Han F, Ullrich SE (2003) Comparative map** of β-amylase activity QTLs among three barley crosses. Crop Sci 43(3):1043–1052

    Article  CAS  Google Scholar 

  • Clark HH (1967) The origin and early history of the cultivated barleys: A botanical and archaeological synthesis. Agril History Rev 15(1):1–18

    Google Scholar 

  • Collins HM, Panozzo JF, Logue SJ, Jefferies SP, Barr AR (2003) Map** and validation of chromosome regions associated with high malt extract in barley (Hordeum vulgare L.). Aus J Agril Res 54(12):1223–1240

    Article  CAS  Google Scholar 

  • Cook R, McCaig N, McMillan JMB, Lumsden WB (1990) Ethyl carbamate formation in grain-based spirits: part III The Primary Source. J Institute Brew 96(4):233–244

    Article  CAS  Google Scholar 

  • Cook R, Oliver B (1991) Rapid detection of cyanogenic glycoside in malted barley. In: Proceedings of European brewery convention congress, Oxford University Press, Oxford, pp 513–519.

  • Cu ST, March TJ, Stewart S, Degner S, Coventry S, Box A, Doug S, Skadhauge B, Burton RA, Fincher GB, Eglinton J (2016) Genetic analysis of grain and malt quality in an elite barley population. Mol Br 36(9):129

    Article  Google Scholar 

  • Cuesta-Marcos A, Szucs P, Close TJ, Filichkin T, Muehlbauer GJ, Smith KP, Hayes PM (2010) Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association map** in germplasm arrays varying in size and structure. BMC Genomics 11(1):707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delcour JA, Hoseney RC (2010) Principles of Cereal Science and Technology. In: AACC International Press, p 270

  • Distelfeld A, Korol A, Dubcovsky J, Uauy C, Blake T, Fahima T (2008) Collinearity between the barley grain protein content (GPC) QTL on chromosome arm 6HS and the wheat Gpc-B1 region. Mol Br 22(1):25–38

    Article  CAS  Google Scholar 

  • Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, Newbigin E, Bacic A (2009) A barley cellulose synthase-like CSLH gene mediates (1, 3; 1, 4)-β-D-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci 106(14):5996–6001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edney MJ, Mather DE (2004) Quantitative trait loci affecting germination traits and malt friability in a two-rowed by six-rowed barley cross. J Cereal Sci 39(2):283–290

    Article  CAS  Google Scholar 

  • Eglinton JK, Langridge P, Evans DE (1998) Thermostability variation in alleles of barley beta-amylase. J Cereal Sci 28(3):301–309

    Article  CAS  Google Scholar 

  • Eglinton JK, Evans DE, Brown AHD, Langridge P, McDonald G, Jefferies SP, Barr AR (1999) The use of wild barley (Hordeum vulgare ssp. spontaneum) in breeding for quality and adaptation. In: 9th Australian barley technical symposium, Melbourne

  • Elia M, Swanston JS, Moralejo M, Casas A, Perez-Vendrell AM, Ciudad FJ et al (2010) A model of the genetic differences in malting quality between European and North American barley cultivars based on a QTL study of the cross Triumph× Morex. Plant Br 129(3):280–290

    Article  CAS  Google Scholar 

  • Emebiri LC, Moody DB, Panozzo JF, Chalmers KJ, Kretschmer JM, Ablett GA (2003) Identification of QTLs associated with variations in grain protein concentration in two-row barley. Aus J Agril Res 54(12):1211–1221

    Article  CAS  Google Scholar 

  • Fan X, Sun Y, Zhu J, Lv C, Guo B, Xu R (2017) A 191-bp insertion/deletion in GBSS1 region is responsible for the changes in grain amylose content in barley (Hordeum vulgare L.). Mol Br 37(6):81

    Article  Google Scholar 

  • Fan X, Zhu J, Dong W, Sun Y, Lv C, Guo B, Xu R (2017) Comparative map** and candidate gene analysis of SSIIa associated with grain amylopectin content in barley (Hordeum vulgare L.). Front Plant Sci 8:1531

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang Y, Zhang X, Xue D (2019) Genetic analysis and molecular breeding applications of malting quality QTLs in barley. Front Genet. https://doi.org/10.3389/fgene.2019.00352

    Article  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2022) http://www.fao.org/faostat/en/#data/QC accessed on Feb. 11, 2022

  • Fedak G, Tsuchiya T, Helgason SB (1972) Use of mono-telotrisomics for linkage map** in barley. Can J Genet Cyto 14:949–957

    Article  Google Scholar 

  • Ferchichi S, Hessini K, Dell’Aversana E, D’Amelia L, Woodrow P, Ciarmiello LF, Fuggi A, Carillo P (2018) Hordeum vulgare and Hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites. Funct Plant Biol 45(11):1096–1109

    Article  CAS  PubMed  Google Scholar 

  • Feuerstein U, Brown AHD, Burdon JJ (1990) Linkage of rust resistance genes from wild barley (Hordeum spontaneum) with isozyme markers. Plant Br 104(4):318–324

    Article  CAS  Google Scholar 

  • Forster BP, Rzussell JR, Ellis RP, Handley LL, Robinson D, Hackett CA, Nevo E, Waugh R, Gordon DC, Keith R, Powell W (1997) Locating genotypes and genes for abiotic stress tolerance in barley: a strategy using maps, markers and the wild species. New Phytol 137(1):141–147

    Article  Google Scholar 

  • Fox GP, Panozzo JF, Li CD, Lance RCM, Inkerman PA, Henry RJ (2003) Molecular basis of barley quality. Aus J Agril Res 54(12):1081–1101

    Article  CAS  Google Scholar 

  • Friedt W, Ordon F (2013) Barley production and breeding in Europe: Modern cultivars combine disease resistance, malting quality and high yield. In: Zhang Guo**, Chengdao Li, Liu Xu (eds) Advance in Barley Sciences. Springer, Netherlands, Dordrecht

    Google Scholar 

  • Gao W, Clancy JA, Han F, Prada D, Kleinhofs A, Ullrich SE (2003) Molecular dissection of a dormancy QTL region near the chromosome 7 (5H) L telomere in barley. Theor Appl Genet 107(3):552–559

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Clancy JA, Han F, Jones BL, Budde A, Wesenberg DM, Kleinhofs A, Ullrich SE (2004) Fine map** of a malting-quality QTL complex near the chromosome 4H S telomere in barley. Theor Appl Genet 109(4):750–760

    Article  CAS  PubMed  Google Scholar 

  • Gasparis S, Kała M, Przyborowski M, Łyżnik LA, Orczyk W, Nadolska-Orczyk A (2018) A simple and efficient CRISPR/Cas9 platform for induction of single and multiple, heritable mutations in barley (Hordeum vulgare L.). Plant Methods 14(1):111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauley A, Boden SA (2019) Genetic pathways controlling inflorescence architecture and development in wheat and barley. J Integr Plant Biol 61(3):296–309

    Article  PubMed  PubMed Central  Google Scholar 

  • Genger RK, Nesbitt K, Brown AHD, Abbott DC, Burdon JJ (2005) A novel barley scald resistance gene: genetic map** of the Rrs15 scald resistance gene derived from wild barley Hordeum Vulgare Ssp Spontaneum. Plant Br 124(2):137–141

    Article  CAS  Google Scholar 

  • Goddard R, De Vos S, Steed A, Muhammed A, Thomas K, Griggs D, Ridout C, Nicholson P (2019) Map** of agronomic traits, disease resistance and malting quality in a wide cross of two-row barley cultivars. PLoS ONE 14(7):e0219042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafsson M, Claesson L (1988) Resistance to powdery mildew in wild species of barley. Hereditas 108(2):231–237

    Article  Google Scholar 

  • Han F, Ullrich SE, Chirat S, Menteur S, Jestin L, Sarrafi A, Hayes PM, Jones BL, Blake TK, Wesenbaerg DM, Kleinhofs A, Kilian A (1995) Map** of β-glucan content and β-glucanase activity loci in barley grain and malt. Theor Appl Genet 91(6–7):921–927

    Article  CAS  PubMed  Google Scholar 

  • Hickey LT, Germán SE, Pereyra SA, Diaz JE, Ziems LA, Fowler RA, Platz GJ, Franckowiak JD, Dieters MJ (2017) Speed breeding for multiple disease resistance in barley. Euphytica 213(3):64

    Article  Google Scholar 

  • Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SC, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BB (2019) Breeding crops to feed 10 billion. Natl Biotech 37(7):744–754

    Article  CAS  Google Scholar 

  • Hinchliffe A, Harwood WA (2019) Agrobacterium-mediated transformation of Barley immature embryos. Barley. Humana Press, New York, pp 115–126

    Chapter  Google Scholar 

  • Holme IB, Dionisio G, Madsen CK, Brinch-Pedersen H (2017) Barley HvPAPhy_a as transgene provides high and stable phytase activities in mature barley straw and in grains. Plant Biotech J 15(4):415–422

    Article  CAS  Google Scholar 

  • Hori K, Sato K, Takeda K (2007) Detection of seed dormancy QTL in multiple map** populations derived from crosses involving novel barley germplasm. Theor Appl Genet 115(6):869–876

    Article  PubMed  Google Scholar 

  • Houston K, Russell J, Schreiber M, Halpin C, Oakey H, Washington JM, Booth A, Shirley N, Burton RA, Fincher GB, Waugh R (2014) A genome wide association scan for (1, 3; 1, 4)-β-glucan content in the grain of contemporary 2-row Spring and Winter barleys. BMC Genom 15(1):907

    Article  Google Scholar 

  • Howard KA, Gayler KR, Eagles HA, Halloran GM (1996) The relationship between D hordein and malting quality in barley. J Cereal Sci 24(1):47–53

    Article  CAS  Google Scholar 

  • Idehen E, Tang Y, Sang S (2017) Bioactive phytochemicals in barley. J Food Drug Anal 25(1):148–161

    Article  CAS  PubMed  Google Scholar 

  • Islamovic E, Obert DE, Oliver RE, Harrison SA, Ibrahim A, Marshall JM, Miclaus KJ, Hu G, Jackson EW (2013) Genetic dissection of grain beta-glucan and amylose content in barley (Hordeum vulgare L.). Mol Br 31(1):15–25

    Article  CAS  Google Scholar 

  • Islamovic E, Obert DE, Budde AD, Schmitt M, Brunick R, Kilian A, Chao S, Lazo GR, Marshall JM et al (2014) Quantitative trait loci of barley malting quality trait components in the Stellar/01Ab8219 map** population. Mol Br 34(1):59–73

    Article  CAS  Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia Q, Zhang J, Westcott S, Zhang XQ, Bellgard M, Lance R, Li C (2009) GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genom 9(2):255–262

    Article  CAS  Google Scholar 

  • **ek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapusi E, Corcuera-Gomez M, Melnik S, Stoger E (2017) Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front Plant Sci 8:540

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225(5235):874–876

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Park KG, Baek SB, Kim JG (2011) Inheritance of (1–3)(1–4)-beta-D-glucan content in barley (Hordeum vulgare L.). J Crop Sci Biotech 14(4):239–245

    Article  Google Scholar 

  • Kis A, Hamar E, Tholt G, Ban R, Havelda Z (2019) Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system. Plant Biotech J 17(6):1004

    Article  Google Scholar 

  • Kochevenko A, Jiang Y, Seiler C, Surdonja K, Kollers S, Reif JC, Korzun V, Graner A (2018) Identification of QTL hot spots for malting quality in two elite breeding lines with distinct tolerance to abiotic stress. BMC Plant Biol 18(1):106

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Jain M (2015) The CRISPR–Cas system for plant genome editing: advances and opportunities. J Exp Bot 66(1):47–57

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Khippal A, Singh J, Selvakumar R, Malik R, Kumar D, Kharub AS, Verma RPS, Sharma I (2014) Barley research in India: retrospect and prospects. J Cereal Res Formerly: J Wheat Res 6(1):1–20

    Google Scholar 

  • Kumar V, Kharub AS, Singh GP (2018) Additive main effects and multiplicative interaction and yield stability index for genotype by environment analysis and wider adaptability in barley. Cereal Res Commun 46(2):365–375

    Article  Google Scholar 

  • Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP map** of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38:575–585

    Article  CAS  PubMed  Google Scholar 

  • Lawrenson T, Harwood WA (2019) Creating targeted gene knockouts in barley using CRISPR/Cas9. In: Harwood W (ed) Barley. Humana Press, New York, NY, pp 217–232

    Chapter  Google Scholar 

  • Lawrenson T, Shorinola O, Stacey N, Li C, Ostergaard L, Patron N, Uauy C, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16(1):258

    Article  PubMed  PubMed Central  Google Scholar 

  • Li CD, Zhang XQ, Eckstein P, Rossnagel BG, Scoles GJ (1999) A polymorphic microsatellite in the limit dextrinase gene of barley (Hordeum vulgare L.). Mol Br 5(6):569–577

    Article  CAS  Google Scholar 

  • Li J, Baga M, Rossnagel BG, Legge WG, Chibbar RN (2008) Identification of quantitative trait loci for β-glucan concentration in barley grain. J Cereal Sci 48(3):647–655

    Article  CAS  Google Scholar 

  • Liu H, Bayer M, Druka A, Russell JR, Hackett CA, Poland J, Ramsay L, Hedley PE, Waugh R (2014) An evaluation of genoty** by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley. BMC Genom 15(1):1–11

    Google Scholar 

  • Liu M, Li Y, Ma Y, Zhao Q, Stiller J, Feng Q, Tian Q, Liu D, Han B, Liu C (2020) The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley. Plant Biotech J 18(2):443–456

    Article  CAS  Google Scholar 

  • Lombardi T, Fochetti T, Onnis A (2000) Comparative salt tolerance of two wild Hordeum species (H. maritimum With. and H. murinum L.) from the coast of Tuscany (Italy). Plant Biosyst 134(3):333–339

    Article  Google Scholar 

  • Looseley ME, Ramsay L, Bull H, Swanston JS, Shaw PD, Macaulay M, Booth A, Russell JR, Waugh R, Thomas WT (2020) Association map** of malting quality traits in UK spring and winter barley cultivar collections. Theor Appl Genet 133(9):2567–2582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loscos J, Igartua E, Contreras-Moreira B, Gracia MP, Casas AM (2014) HvFT1 polymorphism and effect—survey of barley germplasm and expression analysis. Front Plant Sci 5:251

    Article  PubMed  PubMed Central  Google Scholar 

  • Lundqvist U, Franckowiak JD, Konishi T (1997) New and revised descriptions of barley genes. Barley Genet Newsl 26:22–516

    Google Scholar 

  • Ma X, Zhu Q, Chen Y, Liu YG (2016) CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9(7):961–974

    Article  CAS  PubMed  Google Scholar 

  • Matthies IE, Weise S, Forster J, Roder MS (2009) Association map** and marker development of the candidate genes (1→ 3), (1→ 4)-β-D-Glucan-4-glucanohydrolase and (1→ 4)-β-Xylan-endohydrolase 1 for malting quality in barley. Euphytica 170(1–2):109

    Article  CAS  Google Scholar 

  • Matthies IE, Malosetti M, Roder MS, Eeuwijk FV (2014) Genome-wide association map** for kernel and malting quality traits using historical European barley records. PloS one 9(11):e110046

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammadi M, Endelman JB, Nair S, Chao S, Jones SS, Muehlbauer GJ, Ullrich SE, Baik BK, Wise ML, Smith KV (2014) Association map** of grain hardness, polyphenol oxidase, total phenolics, amylose content, and β-glucan in US barley breeding germplasm. Mol Br 34:1229–1243. https://doi.org/10.1007/s11032-014-0112-5

    Article  CAS  Google Scholar 

  • Molina-Cano JL, Polo JP, Romera E, Araus JL, Zarco J, Swanston JS (2001) Relationships between barley hordeins and malting quality in a mutant of cv. Triumph I. Genotype by environment interaction of hordein content. J Cereal Sci 34(3):285–294

    Article  CAS  Google Scholar 

  • Molina-Cano JL, Moralejo M, Elia M, Munoz P, Russell JR, Perez-Vendrell AM, Swanston JS (2007) QTL analysis of a cross between European and North American malting barleys reveals a putative candidate gene for β-glucan content on chromosome 1H. Mol Br 19(3):275–284

    Article  CAS  Google Scholar 

  • Mulatu B, Grando S (2011) Barley research and development in Ethiopia. http://197.156.72.153:8080/xmlui/handle/123456789/198.

  • Munns R, James RA, Islam AKMR, Colmer TD (2011) Hordeum marinum-wheat amphiploids maintain higher leaf K+: Na+ and suffer less leaf injury than wheat parents in saline conditions. Plant Soil 348(1–2):365

    Article  CAS  Google Scholar 

  • Nakamura S, Pourkheirandish M, Morishige H, Kubo Y, Nakamura M, Ichimura K, Seo S, Kanamori H, Wu J, Ando T, Hensel G, Sameri M, Stein N, Sato K, Matsumoto T, Yano M, Komatsuda T (2016) Mitogen-activated protein kinase kinase 3 regulates seed dormancy in barley. Curr Biol 26(6):775–781

    Article  CAS  PubMed  Google Scholar 

  • Nevo E, Baum B, Beiles A, Johnson DA (1998) Ecological correlates of RAPD DNA diversity of wild barley, Hordeum spontaneum, in the fertile crescent. Genet Resour Crop Evol 45(2):151–159

    Article  Google Scholar 

  • Newton AC, Flavell AJ, George TS, Leat P, Mullholland B, Ramsay L, Giha CR, Russell J, Steffenson BJ, Swanston JS, Thomas WTB, Waugh R, White PJ, Bingham IJ (2011) Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Secur 3(2):141

    Article  Google Scholar 

  • Palmer GH, Barrett J, Kirsop BH (1972) Combined acidulation and gibberellic acid treatment in the accelerated malting of abraded barley. J Institute Brew 78(1):81–83

    Article  CAS  Google Scholar 

  • Panozzo JF, Eckermann PJ, Mather DE, Moody DB, Black CK, Collins HM, Barr AR, Lim P, Cullis BR (2007) QTL analysis of malting quality traits in two barley populations. Aus J Agril Res 58(9):858–866

    Article  CAS  Google Scholar 

  • Pauli D, Muehlbauer GJ, Smith KP, Cooper B, Hole D, Obert DE, Ullrich SE, Blake TK (2014) Association map** of agronomic QTLs in US spring barley breeding germplasm. The Plant Genom 7(3):1–15

    Article  Google Scholar 

  • Peltonen J, Rita H, Aikasalo R, Home S (1994) Hordein and malting quality in northern barleys. Hereditas 120(3):231–239

    Article  CAS  Google Scholar 

  • Pickering R, Johnston PA (2005) Recent progress in barley improvement using wild species of Hordeum. Cytogenet Genome Res 109(1–3):344–349

    Article  CAS  PubMed  Google Scholar 

  • Pourkheirandish M, Komatsuda T (2007) The importance of barley genetics and domestication in a global perspective. Ann Bot 100(5):999–1008

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi JC, Chen JX, Wang JM, Wu FB, Cao LP, Zhang GP (2005) Protein and hordein fraction content in barley seeds as affected by sowing date and their relations to malting quality. J Zhejiang Univ Sci B 6(11):1069

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren X, Nevo E, Sun D, Sun G (2013) Tibet as a potential domestication centre of cultivated barley of China. PloS One 8(5):e62700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy JK, Smith KP, Muehlbauer GJ, Chao S, Close TJ, Steffenson BJ (2010) Association map** of spot blotch resistance in wild barley. Mol Br 26(2):243–256

  • Sato K, Matsumoto T, Ooe N, Takeda K (2009) Genetic analysis of seed dormancy QTL in barley. Breed Sci 59(5):645–650

    Article  CAS  Google Scholar 

  • Schmalenbach I, Pillen K (2009) Detection and verification of malting quality QTLs using wild barley introgression lines. Theor Appl Genet 118(8):1411–1427

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmalenbach I, Leon J, Pillen K (2009) Identification and verification of QTLs for agronomic traits using wild barley introgression lines. Theor Appl Genet 118(3):483–497

    Article  CAS  PubMed  Google Scholar 

  • Schreiber M, Wright F, MacKenzie K, Hedley PE, Schwerdt JG, Little A, Burton RA, Fincher GB, Marshall D, Waugh R, Halpin C (2014) The barley genome sequence assembly reveals three additional members of the CslF (1, 3; 1, 4)-β-glucan synthase gene family. PLoS One 9(3):e90888

    Article  PubMed  PubMed Central  Google Scholar 

  • Seckin B, Turkan I, Sekmen AH, Ozfidan C (2010) The role of antioxidant defence systems at differential salt tolerance of Hordeum marinum Huds.(sea barleygrass) and Hordeum vulgare L.(cultivated barley). Environ Exp Bot 69(1):76–85

    Article  CAS  Google Scholar 

  • Sharma R, Draicchio F, Bull H, Herzig P, Maurer A, Pillen K, Thomas WTB, Flavell AJ (2018) Genome-wide association of yield traits in a nested association map** population of barley reveals new gene diversity for future breeding. J Exp Bot 69(16):3811–3822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu X, Rasmussen SK (2014) Quantification of amylose, amylopectin, and β-glucan in search for genes controlling the three major quality traits in barley by genome-wide association studies. Front Plant Sci 5:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Shu X, Backes G, Rasmussen SK (2012) Genome-wide association study of resistant starch (RS) phenotypes in a barley variety collection. J Agril Food Chem 60(41):10302–10311

    Article  CAS  Google Scholar 

  • Steffenson BJ, Olivera P, Roy JK, ** Y, Smith KP, Muehlbauer GJ (2007) A walk on the wild side: mining wild wheat and barley collections for rust resistance genes. Aus J Agril Res 58(6):532–544

    Article  Google Scholar 

  • Suhayda CG, Redmann RE, Harvey BL, Cipywnyk AL (1992) Comparative response of cultivated and wild barley species to salinity stress and calcium supply. Crop Sci 32(1):154–163

    Article  CAS  Google Scholar 

  • Suprunova T, Krugman T, Distelfeld A, Fahima T, Nevo E, Korol A (2007) Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Plant Mol Biol 64(1–2):17–34

    Article  CAS  PubMed  Google Scholar 

  • Swanston JS (1999) Quantifying cyanogenic glycoside production in the acrospires of germinating barley grains. J Sci Food Agric 79(5):745–749

    Article  CAS  Google Scholar 

  • Szucs P, Blake VC, Bhat PR, Chao S, Close TJ, Cuesta-Marcos A, Muehlbauer GJ, Ramsay L, Waugh R, Hayes PM (2009) An integrated resource for barley linkage map and malting quality QTL alignment. Plant Genome 2(2):134–140

    Article  CAS  Google Scholar 

  • Tadesse D, Derso B (2019) The status and constraints of food barley production in the North Gondar highlands, North Western Ethiopia. Agric Food Secur 8(1):1–7

    Article  Google Scholar 

  • Takeda K (1996) Varietal variation and inheritance of seed dormancy in barley. In: Noda K, Mares DJ (Eds.) Proceedings of the seventh international symposium on pre-harvest sprouting in cereals, Osaka: Centre for Academic Societies of Japan, pp 205–212

  • Von Korff M, Wang H, Leon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111(3):583–590

    Article  Google Scholar 

  • Von Korff M, Wang H, Leon J, Pillen K (2008) AB-QTL analysis in spring barley: III. Identification of exotic alleles for the improvement of malting quality in spring barley (H. vulgare ssp. spontaneum). Mol Br 21(1):81–93

    Article  Google Scholar 

  • Wang M, Heimovaara-Dijkstra S, Van Duijn B (1995) Modulation of germination of embryos isolated from dormant and non-dormant barley grains by manipulation of endogenous abscisic acid. Planta 195(4):586–592

    Article  CAS  Google Scholar 

  • Wang J, Yang J, Zhang Q, Zhu J, Jia Q, Hua W, Shang Y, Li C, Zhou M (2015a) Map** a major QTL for malt extract of barley from a cross between TX9425× Naso Nijo. Theor Appl Genet 128(5):943–952

    Article  PubMed  Google Scholar 

  • Wang X, Zhang X, Cai S, Ye L, Zhou M, Chen Z, Zhang G, Dai F (2015b) Genetic diversity and QTL map** of thermostability of limit dextrinase in barley. J Agril Food Chem 63(14):3778–3783

    Article  CAS  Google Scholar 

  • Wang J, Yang J, Hua W, Wu X, Zhu J, Shang Y, Zhou M (2018) QTL map** reveals the relationship between pasting properties and malt extract in barley. Int J Mol Sci 19(11):3559

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Breier U, Hensel G, Kumlehn J, Schubert I, Reiss B (2016) Stable gene replacement in barley by targeted double-strand break induction. J Exp Bot 67(5):1433–1445

    Article  CAS  PubMed  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Hatta MA, Hinchliffe A, Steed A, Reynolds D, Adamski NM et al (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plant 4(1):23–29

    Article  Google Scholar 

  • Wei K, Xue DW, Huang YZ, ** XL, Wu FB, Zhang GP (2009) Genetic map** of quantitative trait loci associated with β-amylase and limit dextrinase activities and β-glucan and protein fraction contents in barley. J Zhejiang Univ Sci B 10(11):839–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidner S, Paprocka J, Kamieniecki B, Zadernowski R (1992) The role of phenolic acids in dormancy of barley caryopses. In: Proceedings of the 6th International conference on pre-harvest sprouting, pp 200–211

  • Wendt T, Holm PB, Starker CG, Christian M, Voytas DF, Brinch-Pedersen H, Holme IB (2013) TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83(3):279–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubkovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Chen G, Cheng J, Nevo E, Gutterman Y (2008) Phenotypic variation in caryopsis dormancy and seedling salt tolerance in wild barley, Hordeum spontaneum, from different habitats in Israel. Genet Resour Crop Evol 55(7):995–1005

    Article  Google Scholar 

  • Yasuda S (1969) Linkage and pleiotropic effects on agronomic characters of the genes for spring growth habit. Barley Newsl 12:57–58

    Google Scholar 

  • Youssef HM, Eggert K, Koppolu R, Alqudah AM, Poursarebani N, Fazeli A, Sakuma S et al (2017) VRS2 regulates hormone-mediated inflorescence patterning in barley. Nature Genet 49(1):157–161

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Long H, Deng G, Pan Z, Liang J, Zeng X, Tang Y, Tashi N, Yu M (2016) A single nucleotide polymorphism of nud converts the caryopsis type of barley (Hordeum vulgare L.). Plant Mol Biol Rep 34(1):242–248

    Article  CAS  Google Scholar 

  • Yun SJ, Gyenis L, Hayes PM, Matus I, Smith KP, Steffenson BJ, Muehlbauer GJ (2005) Quantitative trait loci for multiple disease resistance in wild barley. Crop Sci 45(6):2563–2572

    Article  CAS  Google Scholar 

  • Yun SJ, Gyenis L, Bossolini E, Hayes PM, Matus I, Smith KP, Steffenson BJ, Tuberosa R, Muehlbauer GJ (2006) Validation of quantitative trait loci for multiple disease resistance in barley using advanced backcross lines developed with a wild barley. Crop Sci 46(3):1179–1186

    Article  Google Scholar 

  • Zeng X, Mishina K, Jia J, Distelfeld A, Maughan PJ, Kikuchi S, Sassa H, Komatsuda T (2020) The Brittle Rachis Trait in Species Belonging to the Triticeae and Its Controlling Genes Btr1 and Btr2. Front Plant Sci 11:1000

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Johnson P, Ryan PR, Delhaize E, Zhou M (2012) Quantitative trait loci for salinity tolerance in barley (Hordeum vulgare L.). Mol Br 29(2):427–436

    Article  Google Scholar 

  • Zhou TS, Takashi I, Ryouichi K, Naohiko H, Makoto K, Takehiro H, Kazuhiro S (2012) Malting quality quantitative trait loci on a high-density map of Mikamo golden× Harrington cross in barley (Hordeum vulgare L.). Mol Br 30(1):103–112

    Article  CAS  Google Scholar 

  • Zhou G, Panozzo J, Zhang XQ, Cakir M, Harasymow S, Li C (2016) QTL map** reveals genetic architectures of malting quality between Australian and Canadian malting barley (Hordeum vulgare L.). Mol Br 36(6):70

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific funding.

Author information

Authors and Affiliations

Authors

Contributions

Vishnu Kumar wrote the manuscript with the contributions of all the co-authors.

Corresponding author

Correspondence to Vishnu Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by A. M. Alqudah.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Chaturvedi, S.K. & Singh, G.P. Brief review of malting quality and frontier areas in barley. CEREAL RESEARCH COMMUNICATIONS 51, 45–59 (2023). https://doi.org/10.1007/s42976-022-00292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-022-00292-z

Keywords

Navigation