Log in

Wild barley eibi1 mutation identifies a gene essential for leaf water conservation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Drought is a major abiotic stress that limits plant growth and crop productivity. A spontaneous wilty mutant (eibi1) hypersensitive to drought was identified from wild barley (Hordeum spontaneum Koch). eibi1 showed the highest relative water loss rate among the known wilty mutants, which indicates that eibi1 is one of the most drought-sensitive mutants. eibi1 had the same abscisic acid (ABA) level, the same ability to accumulate stress-induced ABA, and the same stomatal movement in response to light, dark, drought, and exogenous ABA as the wild type, revealing that eibi1 was neither an ABA-deficient nor an ABA-insensitive mutant. The eibi1 leaves had a larger chlorophyll efflux rate in 80% ethanol than the wild-type leaves; and the transpiration rate of eibi1 was more closely related to chlorophyll efflux rate than to stomatal density, demonstrating that the cuticle of eibi1 was defective. eibi1 will be a promising candidate to study the actual barrier layer in the cuticle that limits water loss of the plant. Exogenous ABA reduced leaf length growth in eibi1 more than in the wild type, implying an interaction on plant growth of ABA signal transduction and the eibi1 product. One may infer that the eibi1 product may reverse the growth inhibition induced by ABA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3a–d
Fig. 4
Fig. 5a–e

Similar content being viewed by others

Abbreviations

ABA :

Abscisic acid

References

  • Becker M, Kerstiens G, Schönherr J (1986) Water permeability of plant cuticles: permeance, diffusion and partition coefficients. Trees 1:54–60

    CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Google Scholar 

  • Brown AHD, Zohary D, Nevo E, (1978) Outcrossing rates and heterozygosity in natural populations of Hordeum spontaneum Koch in Israel. Heredity 41:49–62

    Google Scholar 

  • Chen G, Lips SH, Sagi M (2002) Biomass production, transpiration rate and endogenous abscisic acid levels in grafts of flacca and wild-type tomato (Lysopersicon esculentum). Funct Plant Biol 29:1329–1335

    Article  CAS  Google Scholar 

  • Chen X, Goodwin SM, Boroff VL, Liu X, Jenks MA (2003) Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15:1170–1185

    Article  CAS  PubMed  Google Scholar 

  • Edwards D, Abbott GD, Raven JA (1996) Cuticles of early land plants: a palaeoecophysiological evaluation. In: Kerstiens G (ed) Plant cuticles: an integrated functional approach. Bios, Oxford, pp 1–32

  • Edwards D, Kerp H, Hass H (1998) Stomata in early land plants: an anatomical and ecophysiological approach. J Exp Bot 49:255–278

    Article  Google Scholar 

  • Finkelstein RR (1994a) Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. Plant J 5: 765–771

    Article  Google Scholar 

  • Finkelstein RR (1994b) Maternal effects govern variable dominance of two abscisic acid response mutations in Arabidopsis thaliana. Plant Physiol 105:1203–1208

    CAS  PubMed  Google Scholar 

  • Himmelbach A, Iten M, Grill E (1998) Signaling of abscisic acid to regulate plant growth. Philos Trans R Soc London Ser B 353:1439–1444

    Article  CAS  Google Scholar 

  • Jeffree CE (1996) Structure and ontogeny of plant cuticles. In: Kerstiens G (ed) Plant cuticles: an integrated functional approach. Bios, Oxford, pp 33–82

  • Jenks MA (2002) Critical issues with the plant cuticle’s function in drought tolerance. In: Wood AJ (ed) Biochemical & molecular responses of plants to the environment. Research Signpost Press, Kerala, India, pp 97–127

  • Jenks MA, Joly RJ, Peters PJ, Rich PJ, Axtell JD, Ashworth EA (1994) Chemically-induced cuticle mutation affecting epidermal conductance to water vapor and disease susceptibility in Sorghum bicolor (L.) Moench. Plant Physiol 105:1239–1245

    CAS  PubMed  Google Scholar 

  • Jenks MA, Eigenbrode S, Lemeiux B (2002) Cuticular waxes of Arabidopsis. In: Somerville C, Meyerowitz E (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville. DOI/10.1199/tab.0016, http://www.aspb.org/publications/arabidopsis

  • Kamp H (1930) Untersuchungen über kutikularbau und kutikuläre transpiration von blättern. Jahrb Wiss Bot 72:465–503

    Google Scholar 

  • Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383

    CAS  Google Scholar 

  • Lendzian KJ, Kerstiens G (1991) Sorption and transport of gases and vapors in plant cuticles. Rev Environ Contam Toxicol 121:65–128

    CAS  Google Scholar 

  • Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE 2 (ABI2) and ABI1 genes encode redundant protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang XQ, Watson MB, Assmann SM (2000) Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287:300–303

    Article  PubMed  Google Scholar 

  • Lolle SJ, Hsu W, Pruitt RE (1998) Genetic analysis of organ fusion in Arabidopsis thaliana. Genetics 149:607–619

    CAS  PubMed  Google Scholar 

  • Ludlow MM, Muchow RC (1990) A critical evaluation of traits for improving crop yields in water-limited environments. Adv Agron 43:107–153

    Google Scholar 

  • Lundqvist U, Lundqvist A (1988) Mutagen specificity in barley for 1580 eceriferum mutants localized to 79 loci. Hereditas 108:1–12

    CAS  Google Scholar 

  • Mertens RJ, Deus-Neumann B, Weiler EW (1985) Monoclonal antibodies for the detection and quantitation of the endogenous plant growth regulator, abscisic acid. FEBS Lett 160:269–272

    Article  Google Scholar 

  • Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    Article  CAS  PubMed  Google Scholar 

  • Nambara E, Keith K, McCourt P, Naito S (1995) A regulatory role for the ABI3 gene in the establishment of embryo maturation in Arabidopsis thaliana. Development 121: 629–636

    CAS  Google Scholar 

  • Nevo E (1992) Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. In: Shewry P (ed) Barley genetics, molecular biology and biotechnology. CAB International, Wallingford, UK, pp 19–43

  • Nevo E, Zohary D, Brown AHD, Haber M (1979) Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel. Evolution 33:815–833

    CAS  Google Scholar 

  • Nevo E, Beiles A, Gutterman Y, Stroch N, Kaplan D (1984) Genetic resources of wild cereals in Israel and the vicinity: II. Phenotypic variation within and between populations of wild barley, Hordeum spontaneum. Euphytica 33:737–756

    Google Scholar 

  • Niederl S, Kirsch T, Riederer M, Schreiber L (1998) Co-permeability of 3H-labeled organic acids across isolated plant cuticles: Investigating cuticular paths of diffusion and predicting cuticular transpiration. Plant Physiol 116:117–123

    Article  CAS  Google Scholar 

  • Ooms JJJ, Léon-Kloosterziel KM, Bartels D, Koornneef M, Karssen CM (1993) Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana. A comparative study using abscisic acid-insensitive abi3 mutants. Plant Physiol 102:1185–1191

    CAS  PubMed  Google Scholar 

  • Pei Z, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill Erwin J, Schroeder I (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    CAS  PubMed  Google Scholar 

  • Raskin I, Ladyman JAR (1988) Isolation and characterization of a barley mutant with abscisic acid-insensitive stomata. Planta 173:73–78

    Google Scholar 

  • Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032

    CAS  PubMed  Google Scholar 

  • Rock CK, Heath TG, Gage DA, Zeevaart AD (1991) Abscisic alcohol is an intermediate in abscisic acid biosynthesis in a shunt pathway from abscisic aldehyde. Plant Physiol 97:670–676

    CAS  Google Scholar 

  • Sagi M, Fluhr R, Lips SH (1999) Aldehyde oxidase and xanthine dehydrogenase in a flacca tomato mutant with deficient abscisic acid and wilty phenotype. Plant Physiol 120:571–577

    Article  CAS  PubMed  Google Scholar 

  • Schönherr J (1982) Resistance of plant surfaces to water loss: transport properties of cutin, suberin and associated lipids. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology. Springer, Berlin Heidelberg New York, pp 153–179

  • Schönherr J, Riederer M (1988) Desorption of chemicals from plant cuticles: evidence for asymmetry. Arch Environ Contam Toxicol 17:13–19

    Google Scholar 

  • Schönherr J, Riederer M (1989) Foliar penetration and accumulation of organic chemicals in plant cuticles. Rev Environ Contam Toxicol 108:1–70

    Google Scholar 

  • Schreiber L, Riederer M (1996a) Determination of diffusion coefficients of octadecanoic acid in isolated cuticular waxes and their relationship to cuticular water permeabilities. Plant Cell Environ 19:1075–1082

    CAS  Google Scholar 

  • Schreiber L, Riederer M (1996b) Ecophysiology of cuticular transpiration: comparative investigation of cuticular water permeability of plant species from different habitats. Oecologia Berlin 107:426–432

    Google Scholar 

  • Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874

    CAS  PubMed  Google Scholar 

  • Seo M, Peeters AJM, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JAD, Koorneef M, Kamiya Y, Koshiba T (2000) The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci USA 97:12908–12913

    Article  CAS  PubMed  Google Scholar 

  • Sieber P, Schorderet M, Ryser U, Buchala A, Kolattukudy P, Metraux JP, Nawrath C (2000) Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions. Plant Cell 12:721–737

    Article  CAS  PubMed  Google Scholar 

  • Sitte P, Rennier R (1963) Untersuchungen an cuticularen Zellwandschichten. Planta 60:19–40

    CAS  Google Scholar 

  • Tan BC, Schwartz SH, Zeevaart JAD, McCarty DR (1997) Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA 94:12235–12240

    Article  CAS  PubMed  Google Scholar 

  • Taylor IB (1991) Genetics of ABA synthesis. In: Davies WJ, Jones HG (eds) Abscisic acid, physiology and biochemistry. Bios Scientific, Oxford, pp 23–37

  • Walker-Simmons M, Kudrna DA, Warner RL (1989) Reduced accumulation of ABA during water stress in a molybdenum cofactor mutant of barley. Plant Physiol 90:728–733

    CAS  Google Scholar 

  • Weyers JDB, Johansen LG (1985) Accurate estimation of stomatal aperture from silicone rubber impressions. New Phytol 101:109–115

    Google Scholar 

  • **ong L, Ishitani M, Lee H, Zhu JK (2001) The Arabidopsis los5/aba3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13:2063–2083

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Gong Z, Zhang C, Song CP, Damsz B, Inan G, Koiwa H, Zhu JK, Hasegawa PM, Bressan RA (2002) OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. Plant Cell 14:3009–3028

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the following: the Israel Discount Bank Chair of Evolutionary Biology; the Ancell-Teicher Research Foundation for Molecular Genetics and Evolution; the German–Israel Project Cooperation (DIP project funded by the BMBF and supported by BMBF’s International Bureau at the DLR), and the Graduate School of the University of Haifa, Israel. The authors thank Mrs. Ma Yan and Ms. Milade Naela for assistance in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eviatar Nevo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Sagi, M., Weining, S. et al. Wild barley eibi1 mutation identifies a gene essential for leaf water conservation. Planta 219, 684–693 (2004). https://doi.org/10.1007/s00425-004-1277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1277-7

Keywords

Navigation