Log in

Recent advances in non-biomass and biomass-based electromagnetic shielding materials

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

With the advent of the 5G technology era and the development of flexible electronic devices, higher requirements for electromagnetic interface (EMI) shielding materials have been put forward in the fields of national defense and civil use. At present, researchers have done a lot of research work and made a lot of achievements from traditional non-biomass to green and sustainable biomass-based EMI shielding materials. However, thin, flexible, environment-friendly, and high EMI shielding materials are still a worldwide problem to be solved. On this basis, this review summarizes the development status of traditional common non-biomass-based and novel green sustainable biomass-based EMI shielding materials in the past 3 years, compares and summarizes their related EMI shielding performance, and also points out the shortcomings of each type of EMI shielding materials. Finally, the challenges and future development trends of EMI shielding materials are summarized and prospected. It is hoped that this review can provide researchers with richer choices and more comprehensive, efficient, and timely reference from the selection and design of materials and process methods, the composition of different components, and the regulation of microstructure and promote the faster development of the EMI shielding field.

Graphical Abstract

Main non-biomass and biomass-based electromagnetic shielding composite materials

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [154], © American Chemical Society 2021. c Schematic diagram of the preparation of Ni/Fe3O4/Ni/cellulose paper. d EMI shielding mechanism and performance of the Ni/Fe3O4/Ni/cellulose paper. Reproduced with permission from Ref. [29], © Elsevier Ltd. 2021

Similar content being viewed by others

Data availability

Data availability is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Lan LY, ** JF, **ong JQ, Ying YB (2022) Sustainable natural bio-origin materials for future flexible devices. Adv Sci 9(15):2200560. https://doi.org/10.1002/advs.202200560

    Article  Google Scholar 

  2. **ong CY, Wang TX, Han J, Zhang Z, Ni YH (2023) Recent research progress of paper-based supercapacitors based on cellulose. Energy Environ Mater. https://doi.org/10.1002/eem2.12651

    Article  Google Scholar 

  3. Cao S, Zhang HC, Zhao YX, Zhao YL (2021) Pillararene/calixarene-based systems for battery and supercapacitor applications. eScience 1(1):28–43. https://doi.org/10.1016/j.esci.2021.10.001

  4. **ong CY, Zheng CM, Jiang X, **ao XF, Wei HY et al (2023) Recent progress of green biomass based composite materials applied in supercapacitors, sensors, and electrocatalysis. J Energy Storage 72:108633. https://doi.org/10.1016/j.est.2023.108633

    Article  Google Scholar 

  5. Pacchioni G (2022) Sustainable flexible supercapacitors. Nature Rev Mater 7:844. https://doi.org/10.1038/s41578-022-00508-y

    Article  Google Scholar 

  6. Tan HW, Choong YYC, Kuo CN, Low HY, Chua CK (2022) 3D printed electronics: processes, materials and future trends. Prog Mater Sci 127:100945. https://doi.org/10.1016/j.pmatsci.2022.100945

    Article  Google Scholar 

  7. **ong CY, Wang TX, Zhou LF, Zhang YK, Dai L et al (2023) Fabrication of dual-function conductive cellulose-based composites with layered conductive network structures for supercapacitors and electromagnetic shielding. Chem Eng J 472:144958. https://doi.org/10.1016/j.cej.2023.144958

    Article  Google Scholar 

  8. **ong CY, Zhang YK, Xu JY, Dang WH, Su XH et al (2023) Kinetics process for structure-engineered integrated gradient porous paper-based supercapacitors with boosted electrochemical performance. Nano Res. https://doi.org/10.1007/s12274-023-5694-y

    Article  Google Scholar 

  9. Liu Q, Tang L, Li J, Chen Y, Xu ZK et al (2022) Multifunctional aramid nanofibers reinforced RGO aerogels integrated with high-efficiency microwave absorption, sound absorption and heat insulation performance. J Mater Sci Technol 130:165–175. https://doi.org/10.1016/j.jmst.2022.05.014

    Article  Google Scholar 

  10. Zhang HY, Li JY, Pan Y, Liu YF, Mahmood N et al (2022) Flexible carbon fiber-based composites for electromagnetic interference shielding. Rare Met 41:3612–3629. https://doi.org/10.1007/s12598-022-02057-3

    Article  Google Scholar 

  11. Meng FB, Chen Y, Liu WH, Zhang LK, Deng WT et al (2022) Multifunctional RGO-based films with “brick-slurry” structure: high-efficiency electromagnetic shielding performance, high strength and excellent environmental adaptability. Carbon 200:156–165. https://doi.org/10.1016/j.carbon.2022.07.052

    Article  Google Scholar 

  12. Zhang YL, Ruan KP, Zhou K, Gu JW (2023) Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv Mater 35(16):2211642. https://doi.org/10.1002/adma.202211642

    Article  Google Scholar 

  13. Cheng ML, Ying MF, Zhao RZ, Ji LZ, Li HX et al (2022) Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16(10):16996–17007. https://doi.org/10.1021/acsnano.2c07111

    Article  Google Scholar 

  14. Zhang HB, Liu TT, Huang ZH, Cheng JY, Wang HH et al (2022) Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. J Mater 8(2):327–334. https://doi.org/10.1016/j.jmat.2021.09.003

    Article  Google Scholar 

  15. Lan D, Wang Y, Wang YY, Zhu XF, Li HF et al (2023) Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J Colloid Interface Sci 651:494–503. https://doi.org/10.1016/j.jcis.2023.08.019

    Article  Google Scholar 

  16. **ong CY, Wang TX, Zhang YK, Duan C, Zhang Z et al (2023) Multifunctional conductive material based on intelligent porous paper used in conjunction with a vitrimer for electromagnetic shielding, sensing, Joule heating, and antibacterial properties. ACS Appl Mater Interfaces 15(28):33763–33773. https://doi.org/10.1021/acsami.3c06926

    Article  Google Scholar 

  17. Zhang Z, Liu MX, Ibrahim MM, Wu HK, Wu Y et al (2022) Flexible polystyrene/graphene flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv Compos Hybrid Mater 5:1054–1066. https://doi.org/10.1007/s42114-022-00486-3

    Article  Google Scholar 

  18. Guo J, ** S,  Zhang YX, Li X, Chen ZR et al (2023) Biomass-based electromagnetic wave absorption materials with unique structures: a critical review. ES Food Agrofor 13:900. https://doi.org/10.30919/esfaf900

  19. **e PT, Shi ZC, Feng M, Sun K, Liu Y et al (2022) Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Hybrid Mater 5:679–695. https://doi.org/10.1007/s42114-022-00479-2

    Article  Google Scholar 

  20. Chen Z, Yi D, Shen B, Zhang LH, Ma XH et al (2018) Semi-transparent biomass-derived macroscopic carbon grids for efficient and tunable electromagnetic shielding. Carbon 139:271–2778. https://doi.org/10.1016/j.carbon.2018.06.070

    Article  Google Scholar 

  21. Cao Y, Zeng ZH, Huang DY, Chen Y, Zhang L et al (2022) Multifunctional phase change composites based on biomass/MXene-derived hybrid scaffolds for excellent electromagnetic interference shielding and superior solar/electro-thermal energy storage. Nano Res 15:8524–8535. https://doi.org/10.1007/s12274-022-4626-6

    Article  Google Scholar 

  22. Wang Y, Wang W, Qi QB, Xu N, Yu D (2020) Layer-by-layer assembly of PDMS-coated nickel ferrite/multiwalled carbon nanotubes/cotton fabrics for robust and durable electromagnetic interference shielding. Cellulose 27:2829–2845. https://doi.org/10.1007/s10570-019-02949-1

    Article  Google Scholar 

  23. Li YQ, Samad YA, Polychronopoulou K, Liao K (2015) Lightweight and highly conductive aerogel-like carbon from sugarcane with superior mechanical and EMI shielding properties. ACS Sustain Chemistry Eng 3(7):1419–1427. https://doi.org/10.1021/acssuschemeng.5b00340

    Article  Google Scholar 

  24. **ong CY, Li MR, Han Q, Zhao W, Dai L et al (2022) Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances. J Mater Sci Technol 97:190–200. https://doi.org/10.1016/j.jmst.2021.04.054

    Article  Google Scholar 

  25. Zhang YL, Kong J, Gu JW (2022) New generation electromagnetic materials: harvesting instead of dissipation solo. Sci Bull 67(14):1413–1415. https://doi.org/10.1016/j.scib.2022.06.017

    Article  Google Scholar 

  26. Han YX, He MK, Hu JW, Liu PB, Liu ZW et al (2022) Hierarchical design of feco-based microchains for enhanced microwave absorption in c band. Nano Res. https://doi.org/10.1007/s12274-022-5111-y

    Article  Google Scholar 

  27. Rajavel K, Hu YG, Zhu PL, Sun R, Wong CP (2020) MXene/metal oxides-ag ternary nanostructures for electromagnetic interference shielding. Chem Eng J 399:125791. https://doi.org/10.1016/j.cej.2020.125791

    Article  Google Scholar 

  28. Zhang YL, Gu JW (2022) A perspective for develo** polymer-based electromagnetic interference shielding composites. Nano-Micro Lett 14:89. https://doi.org/10.1007/s40820-022-00843-3

    Article  Google Scholar 

  29. Liu RT, Li TT, Xu J, Zhang TC, **e YJ et al (2021) Sandwich-structural Ni/Fe3O4/Ni/cellulose paper with a honeycomb surface for improved absorption performance of electromagnetic interference. Carbohyd Polym 260:117840. https://doi.org/10.1016/j.carbpol.2021.117840

    Article  Google Scholar 

  30. Yang JM, Yan X, Liao X, Wang H, Liu C et al (2023) Construction of in-situ grid conductor skeleton and magnet core in biodegradable poly (butyleneadipate-co-terephthalate) for efficient electromagnetic interference shielding and low reflection. Compos Sci Technol 240:110093. https://doi.org/10.1016/j.compscitech.2023.110093

    Article  Google Scholar 

  31. Shahapurkar K, Gelaw M, Tirth V, Soudagar MEM, Shahapurkar P et al (2022) Comprehensive review on polymer composites as electromagnetic interference shielding materials. Polym Polym Compos 30:09673911221102127. https://doi.org/10.1177/09673911221102127

    Article  Google Scholar 

  32. Li QT, Yang WK, Sun K, Guo Y, Liu H et al (2022) Superhydrophobic flexible conductive PFDT/CB/MXene@paper for high-efficiency EMI shielding and joule heating applications. J Mater Chem C 10(39):14560–14568. https://doi.org/10.1039/d2tc02727e

  33. Wei YY, Dai ZH, Zhang YF, Zhang WW, Gu J et al (2022) Multifunctional waterproof MXene-coated wood with high electromagnetic shielding performance. Cellulose 29:5883–5893. https://doi.org/10.1007/s10570-022-04609-3

    Article  Google Scholar 

  34. Gan WT, Chen CJ, Giroux M, Zhong G, Goyal MM et al (2020) Conductive wood for high-performance structural electromagnetic interference shielding. Chem Mater 32(12):5280–5289. https://doi.org/10.1021/acs.chemmater.0c01507

    Article  Google Scholar 

  35. Duan C, Tian CC, Feng XM, Tian GD, Liu XS et al (2023) Ultrafast process of microwave-assisted deep eutectic solvent to improve properties of bamboo dissolving pulp. Biores Technol 370:128543. https://doi.org/10.1016/j.biortech.2022.128543

    Article  Google Scholar 

  36. Duan C, Tian CC, Tian GD, Wang XQ, Shen MX et al (2023) Simultaneous microwave-assisted phosphotungstic acid catalysis for rapid improvements on the accessibility and reactivity of Kraft-based dissolving pulp. Int J Biol Macromol 227:214–221. https://doi.org/10.1016/j.ijbiomac.2022.12.182

    Article  Google Scholar 

  37. Ma M, Tao WT, Liao XJ, Chen S, Shi YQ et al (2022) Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding. Chem Eng J 452:139471. https://doi.org/10.1016/j.cej.2022.139471

    Article  Google Scholar 

  38. Li YH, Chen YA, He XF, **ang ZY, Heinze T et al (2021) Lignocellulose nanofibril/gelatin/MXene composite aerogel with fire-warning properties for enhanced electromagnetic interference shielding performance. Chem Eng J 431:133907. https://doi.org/10.1016/j.cej.2021.133907

    Article  Google Scholar 

  39. Zeng ZH, Zhang YF, Ma XYD, Shahabadi SIS, Che B et al (2018) Biomass-based honeycomb-like architectures for preparation of robust carbon foams with high electromagnetic interference shielding performance. Carbon 140:227–236. https://doi.org/10.1016/j.carbon.2018.08.061

    Article  Google Scholar 

  40. Wu SQ, Chen DM, Han WB, **e YS, Zhao GD et al (2022) Ultralight and hydrophobic MXene/chitosan-derived hybrid carbon aerogel with hierarchical pore structure for durable electromagnetic interference shielding and thermal insulation. Chem Eng J 446:137093. https://doi.org/10.1016/j.cej.2022.137093

    Article  Google Scholar 

  41. Liu F, Li YC, Hao S, Cheng Y, Zhan YH et al (2020) Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding. Carbohyd Polym 243:116467. https://doi.org/10.1016/j.carbpol.2020.116467

    Article  Google Scholar 

  42. Xu YC, Zhang X, Wang G, Zhang XL, Luo J et al (2022) Preparation of a strong soy protein adhesive with mildew proof, flame-retardant, and electromagnetic shielding properties via constructing nanophase-reinforced organic–inorganic hybrid structure. Chem Eng J 447:137536. https://doi.org/10.1016/j.cej.2022.137536

    Article  Google Scholar 

  43. Vural M, Francesch AP, Pomes JB, Jung HH, Gudapati H et al (2018) Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding. Adv Func Mater 28(32):1801972. https://doi.org/10.1002/adfm.201801972

    Article  Google Scholar 

  44. **ong CY, Wang TX, Zhang YK, Zhu M, Ni YH (2022) Recent progress on green electromagnetic shielding materials based on macro wood and micro cellulose components from natural agricultural and forestry resources. Nano Res 15:7506–7532. https://doi.org/10.1007/s12274-022-4512-2

    Article  Google Scholar 

  45. Li JL, Liu XX, Fang Y, Yin JH (2022) Recent progress in polymer/two-dimensional nanosheets composites with novel performances. Prog Polym Sci 126:101505. https://doi.org/10.1016/j.progpolymsci.2022.101505

    Article  Google Scholar 

  46. Dai B, Ma Y, Dong F, Yu J, Ma ML et al (2022) Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv Compos Hybrid Mater 5:704–754. https://doi.org/10.1007/s42114-022-00510-6

    Article  Google Scholar 

  47. Zhang YL, Yan Y, Qiu H, Ma ZL, Ruan KP et al (2022) A mini-review of MXene porous films: preparation, mechanism and application. J Mater Sci Technol 103:42–49. https://doi.org/10.1016/j.jmst.2021.08.001

    Article  Google Scholar 

  48. Ying MF, Zhao RZ, Hu X, Zhang ZH, Liu WW et al (2022) Wrinkled titanium carbide (MXene) with surface charge polarizations through chemical etching for superior electromagnetic interference shielding. Angew Chem Int Ed 61(16):e202201323. https://doi.org/10.1002/anie.202201323

    Article  Google Scholar 

  49. Song P, Ma ZL, Qiu H, Ru YF, Gu JW (2022) High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Letters 14:51. https://doi.org/10.1007/s40820-022-00798-5

    Article  Google Scholar 

  50. Sim HJ, Lee DW, Kim H, Jang Y, Spinks GM et al (2019) Self-healing graphene oxide-based composite for electromagnetic interference shielding. Carbon 155:499–505. https://doi.org/10.1016/j.carbon.2019.08.073

    Article  Google Scholar 

  51. Shen X, Kim JK (2022) Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding. Nano Res. https://doi.org/10.1007/s12274-022-4938-6

    Article  Google Scholar 

  52. Wang Z, Shen H, Luo K, Mao W, Xu Y et al (2022) Synthesis of vertical graphene nanowalls on substrates by PECVD as effective EMI shielding materials. ACS Appl Electron Mater 4(8):4023–4032. https://doi.org/10.1021/acsaelm.2c00670

    Article  Google Scholar 

  53. Jia H, Kong QQ, Yang X, **e LJ, Sun GH et al (2021) Dual-functional graphene/carbon nanotubes thick film: bidirectional thermal dissipation and electromagnetic shielding. Carbon 171:329–340. https://doi.org/10.1016/j.carbon.2020.09.017

    Article  Google Scholar 

  54. Han Y, Liu YX, Han L, Lin J, ** P (2017) High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding. Carbon 115:34–42. https://doi.org/10.1016/j.carbon.2016.12.092

    Article  Google Scholar 

  55. Kumar R, Macedo WC, Singh RK, Tiwari VS, Constantino CJL et al (2019) Nitrogen-sulfur co-doped reduced graphene oxide-nickel oxide nanoparticle composites for electromagnetic interference shielding. ACS Appl Energy Mater 2(7):4626–4636. https://doi.org/10.1021/acsanm.9b01002

    Article  Google Scholar 

  56. Tan X, Yuan QL, Qiu MT, Yu JH, Jiang N et al (2022) Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: a mini review. J Mater Sci Technol 117:238–250. https://doi.org/10.1016/j.jmst.2021.10.052

    Article  Google Scholar 

  57. Yu WC, Wang T, Liu YH, Wang ZG, Xu L et al (2020) Superior and highly absorbed electromagnetic interference shielding performance achieved by designing the reflection-absorption-integrated shielding compartment with conductive wall and lossy core. Chem Eng J 393:124644. https://doi.org/10.1016/j.cej.2020.124644

    Article  Google Scholar 

  58. Xu YD, Lin ZQ, Yang YQ, Duan HJ, Zhao GZ et al (2021) Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Mater Horiz 9(2):708–719. https://doi.org/10.1039/d1mh01346g

    Article  Google Scholar 

  59. Han MK, Shuck CE, Rakhmanov R, Parchment D, Anasori B et al (2020) Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14(4):5008–5016. https://doi.org/10.1021/acsnano.0c01312

    Article  Google Scholar 

  60. Iqbal A, Sambyal P, Koo CM (2020) 2D MXenes for electromagnetic shielding: a review. Adv Func Mater 30(47):2000883. https://doi.org/10.1002/adfm.202000883

    Article  Google Scholar 

  61. Song P, Liu B, Qiu H, Shi XT, Cao DP et al (2021) MXenes for polymer matrix electromagnetic interference shielding composites: a review. Compos Commun 24:100653. https://doi.org/10.1016/j.coco.2021.100653

    Article  Google Scholar 

  62. Duan NM, Shi ZY, Wang ZH, Zou B, Zhang CP et al (2022) Mechanically robust Ti3C2Tx MXene/carbon fiber fabric/thermoplastic polyurethane composite for efficient electromagnetic interference shielding applications. Mater Des 214:110382. https://doi.org/10.1016/j.matdes.2022.110382

    Article  Google Scholar 

  63. Hu JN, Liang CY, Li JD, Lin CW, Liang YJ et al (2022) Ultrastrong and hydrophobic sandwich-structured MXene-based composite films for high-efficiency electromagnetic interference shielding. ACS Appl Mater Interfaces 14(29):33817–33828. https://doi.org/10.1021/acsami.2c07741

    Article  Google Scholar 

  64. Wang L, Cheng JW, Zou YX, Zheng WY, Wang YR et al (2023) Current advances and future perspectives of MXene-based electromagnetic interference shielding materials. Adv Compo Hybrid Mater 6:165603. https://doi.org/10.1007/s42114-023-00752-y

    Article  Google Scholar 

  65. Wang L, Ma ZL, Zhang YL, Qiu H, Ruan KP et al (2022) Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 4(2):200–210. https://doi.org/10.1002/cey2.174

    Article  Google Scholar 

  66. Liang LY, Yao C, Yan X, Feng YZ, Hao X et al (2021) High-efficiency electromagnetic interference shielding capability of magnetic Ti3C2Tx MXene/CNT composite film. J Mater Chem A 9(43):24560–24570. https://doi.org/10.1039/d1ta07781c

    Article  Google Scholar 

  67. Zhu YY, Liu J, Guo T, Wang JJ, Tang XZ et al (2021) Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15(1):1465–1474. https://doi.org/10.1021/acsnano.0c08830

    Article  Google Scholar 

  68. Chen W, Liu LX, Zhang HB, Yu ZZ (2021) Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2Tx MXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 15(4):7668–7681. https://doi.org/10.1021/acsnano.1c01277

    Article  Google Scholar 

  69. Song QC, Chen BX, Zhou ZH, Lu CH (2021) Flexible, stretchable and magnetic Fe3O4@Ti3C2Tx/elastomer with supramolecular interfacial crosslinking for enhancing mechanical and electromagnetic interference shielding performance. Sci China Mater 64:1437–1448. https://doi.org/10.1007/s40843-020-1539-2

    Article  Google Scholar 

  70. Hu DW, Wang SQ, Zhang C, Yi PS, Jiang PK et al (2021) Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res 14:2837–2845. https://doi.org/10.1007/s12274-021-3297-z

    Article  Google Scholar 

  71. Cheng HR, Pan YM, Chen Q, Che RC, Zheng GQ et al (2021) Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv Compos Hybrid Mater 4:505–513. https://doi.org/10.1007/s42114-021-00224-1

    Article  Google Scholar 

  72. Li JN, Zheng S, Shao HQ, Shao GW, Su CL et al (2022) Investigation of flexible warp-knitted metal meshes for electromagnetic interference shielding. Text Res J 92(21–22):4191–4207. https://doi.org/10.1177/00405175221102640

    Article  Google Scholar 

  73. Amini M, Nasouri K, Askari G, Shanbeh M, Khoddami A (2022) Lightweight and highly flexible metal deposited composite fabrics for high-performance electromagnetic interference shielding at gigahertz frequency. Fibers Polym 23:800–806. https://doi.org/10.1007/s12221-022-3183-7

    Article  Google Scholar 

  74. Cheng H, Liu SQ, Wang RQ, Zhang W, Pan R et al (2022) Ag nanoparticle-coated polystyrene microspheres for electromagnetic interference shielding films with low metal content. ACS Appl Nano Mater 5(4):5292–5301. https://doi.org/10.1021/acsanm.2c00315

    Article  Google Scholar 

  75. Zhang JP, Zhu DJ, Zhang S, Cheng H, Chen SL et al (2022) Asymmetric electromagnetic shielding performance based on spatially controlled deposition of nickel nanoparticles on carbon nanotube sponge. Carbon 194:290–296. https://doi.org/10.1016/j.carbon.2022.04.012

    Article  Google Scholar 

  76. Han RS, kyung HY,  ** KSK, Kim T, Mun JB  et al (2021) Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite. Chem Eng J 428:131167. https://doi.org/10.1016/j.cej.2021.131167

  77. Yang Y, Chen S, Li WL, Li P, Ma JG et al (2020) Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 14(7):8754–8765. https://doi.org/10.1021/acsnano.0c03337

    Article  Google Scholar 

  78. Li FS, Li QY, Kimura HD, **e XB, Zhang XY et al (2023) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 148(10):250–259. https://doi.org/10.1016/j.jmst.2022.12.003

    Article  Google Scholar 

  79. Fang SX, Zhai FT, Su HH, Sridhar D, Algadi H et al (2023) Progress of metal organic frameworks-based composites in electromagnetic wave absorption. Mater Today Phys 30:100950. https://doi.org/10.1016/j.mtphys.2022.100950

    Article  Google Scholar 

  80. Guo Y, Liu H, Wang DD, El-Bahy ZM, Althakafy JT et al (2022) Engineering hierarchical heterostructure material based on metal-organic frameworks and cotton fiber for high-efficient microwave absorber. Nano Res 15:6841–6850. https://doi.org/10.1007/s12274-022-4533-x

    Article  Google Scholar 

  81. Wu NN, Zhao BB, Liu JY, Li YL, Chen YB et al (2021) MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv Compos Hybrid Mater 5:707–715. https://doi.org/10.1007/s42114-021-00307-z

    Article  Google Scholar 

  82. Zhang ZD, Li ZH, Zhao YH, Bi XR, Zhang ZY et al (2022) Dielectric enhancement effect in biomorphic porous carbon-based iron@iron carbide ‘meta-powder’ for light-weight microwave absorption material design. Adv Compos Hybrid Mater 5:3176–3189. https://doi.org/10.1007/s42114-022-00445-y

    Article  Google Scholar 

  83. Qu Z, Hao JX, **g HH, Wei YQ, Duan JP et al (2022) An ultra-thin ultra-broadband microwave absorber for radar stealth. Adv Compos Hybrid Mater 5:1778–1785. https://doi.org/10.1007/s42114-022-00429-y

    Article  Google Scholar 

  84. Wu XL, Liu K, Ding JW, Zheng BJ, Gao F et al (2022) Construction of Ni-based alloys decorated sucrose-derived carbon hybrid towards: effective microwave absorption application. Adv Compos Hybrid Maters 5:2260–2270. https://doi.org/10.1007/s42114-021-00383-1

    Article  Google Scholar 

  85. Wu NN, Zhao BB, Chen XY, Hou CX, Huang MN et al (2022) Dielectric properties and electromagnetic simulation of molybdenum disulfide and ferric oxide-modified Ti3C2Tx MXene hetero-structure for potential microwave absorption. Adv Compos Hybrid Mater 5:1548–1556. https://doi.org/10.1007/s42114-022-00490-7

    Article  Google Scholar 

  86. Cao G, Cai SY, Zhang H, Tian YQ (2022) High-performance conductive adhesives based on water-soluble resins for printed circuits, flexible conductive films, and electromagnetic interference shielding devices. Adv Compos Hybrid Mater 5:1730–1742. https://doi.org/10.1007/s42114-021-00402-1

    Article  Google Scholar 

  87. Liang CB, Gu ZJ, Zhang YL, Ma ZL, Qiu H et al (2021) Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett 13:181. https://doi.org/10.1007/s40820-021-00707-2

    Article  Google Scholar 

  88. Kumar P, Maiti UN, Sikdar A, Das TK, Kumar A et al (2019) Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects. Polym Rev 59(4):687–738. https://doi.org/10.1080/15583724.2019.1625058

    Article  Google Scholar 

  89. Zeng ZH, Jiang FZ, Yue Y, Han DX, Lin LC et al (2020) Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv Mater 32(19):1908496. https://doi.org/10.1002/adma.201908496

    Article  Google Scholar 

  90. Shi HG, Zhao HB, Liu BW, Wang YZ (2021) Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl Mater Interfaces 13(22):26505–26514. https://doi.org/10.1021/acsami.1c07363

    Article  Google Scholar 

  91. Sun ZP, Chen JL, Jia XC, Wang GQ, Shen B et al (2021) Humidification of high-performance and multifunctional polyimide/carbon nanotube composite foams for enhanced electromagnetic shielding. Mater Today Phys 21:100521. https://doi.org/10.1016/j.mtphys.2021.100521

    Article  Google Scholar 

  92. Hu PY, Lyu J, Fu C, Gong WB, Liao JH et al (2019) Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 14(1):688–697. https://doi.org/10.1021/acsnano.9b07459

    Article  Google Scholar 

  93. Ma ZL, Kang SL, Ma JZ, Shao L, Zhang YL et al (2020) Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7):8368–8382. https://doi.org/10.1021/acsnano.0c02401

    Article  Google Scholar 

  94. Zhang YL, Ruan KP, Gu JW (2021) Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17(42):2101951. https://doi.org/10.1002/smll.202101951

    Article  Google Scholar 

  95. Anand S, Pauline S (2020) Electromagnetic interference shielding properties of BaCo2Fe16O27 nanoplatelets and RGO reinforced PVDF polymer composite flexible films. Adv Mater Interfaces 8(3):2001810. https://doi.org/10.1002/admi.202001810

    Article  Google Scholar 

  96. Cheng Y, Li XY, Qin YX, Fang YT, Liu GL et al (2021) Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci Adv 7(39):eabj1663. https://doi.org/10.1126/sciadv.abj1663

  97. Rathi LP, Ponraj B, Seetharaman D (2021) Absorption-dominant microwave shielding properties of Sn0.2Fe2.8O4-graphite-PVDF ternary nanocomposite films. Journal of Physics D: Appl Phys 55:095002. https://doi.org/10.1088/1361-6463/ac38e2

  98. Ju ZS, Li P, Zhao XN, Ma JG, Xu HY et al (2022) Flexible TiN/Co@carbon nanofiber mats for high-performance electromagnetic interference shielding and joule heating applications. Carbon 196:612–620. https://doi.org/10.1016/j.carbon.2022.05.034

    Article  Google Scholar 

  99. Chen L, Guo K, Zeng SL, Xu L, **ng CY et al (2020) Cross-stacking aligned non-woven fabrics with automatic self-healing properties for electromagnetic interference shielding. Carbon 162:445–454. https://doi.org/10.1016/j.carbon.2020.02.034

    Article  Google Scholar 

  100. Wang XJ, Nie KB, Hu XS, Wang YQ, Sa XJ et al (2012) Effect of extrusion temperatures on microstructure and mechanical properties of SiCp/Mg-Zn-Ca composite. J Alloy Compd 532:78–85. https://doi.org/10.1016/j.jallcom.2012.04.023

    Article  Google Scholar 

  101. Kim M, Yoo Y, Kim J (2014) Synthesis of microsphere silicon carbide/nanoneedle manganese oxide composites and their electrochemical properties as supercapacitors. J Power Sources 265:214–222. https://doi.org/10.1016/j.jpowsour.2014.04.132

    Article  Google Scholar 

  102. Qin Q, Chen J, Song M, Cao FY, Li YN et al (2022) Preparation of sic nanowires based on graphene as the template by microwave sintering. J Alloy Compd 910:164746. https://doi.org/10.1016/j.jallcom.2022.164746

    Article  Google Scholar 

  103. Zhang JY, Yan MW, Sun GC, Li X, Hao BL et al (2022) Theoretical design and preparation of SiC whiskers catalyzed by Fe-oxides on carbon fibers. Ceram Int 48(8):10688–10692. https://doi.org/10.1016/j.ceramint.2021.12.283

    Article  Google Scholar 

  104. **ong CY, Li TH, Zhao TK, Khan M, Wang JQ et al (2016) Preparation of C/C–SiC composite by low temperature compression molding-liquid silicon infiltration and its application in automobile brake. Ceram Int 42(1):1057–1062. https://doi.org/10.1016/j.ceramint.2015.09.030

  105. Yang WQ, Yang D, Mei H, Yao L, **ao SH et al (2021) 3D printing of PDC-SiOC@SiC twins with high permittivity and electromagnetic interference shielding effectiveness. J Eur Ceram Soc 41(11):5437–5444. https://doi.org/10.1016/j.jeurceramsoc.2021.04.048

    Article  Google Scholar 

  106. Iqbal A, Shahzad F, Hantanasirisakul K, Kim MK, Kwon J et al (2020) Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502):446–450. https://doi.org/10.1126/science.aba7977

    Article  Google Scholar 

  107. Lee GS, Yun T, Kim H, Kim IH, Choi J et al (2020) Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano 14(9):11722–11732. https://doi.org/10.1021/acsnano.0c04411

    Article  Google Scholar 

  108. Kim SY, Gang HE, Park GT, Jeon HB, Jeong YG (2021) Electromagnetic interference shielding and electrothermal performance of MXene-coated cellulose hybrid papers and fabrics manufactured by a facile scalable dip-dry coating process. Adv Eng Mater 23(12):2100548. https://doi.org/10.1002/adem.202100548

    Article  Google Scholar 

  109. Qi FQ, Wang L, Zhang YL, Ma ZL, Qiu H et al (2021) Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater Today Phys 21:100512. https://doi.org/10.1016/j.mtphys.2021.100512

    Article  Google Scholar 

  110. Li Y, Tian X, Gao SP, **g L, Li K et al (2019) Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv Func Mater 30(5):1907451. https://doi.org/10.1002/adfm.201907451

    Article  Google Scholar 

  111. Zhang YL, Wang L, Zhang JL, Song P, **ao ZR et al (2019) Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films. Compos Sci Technol 183:107833. https://doi.org/10.1016/j.compscitech.2019.107833

    Article  Google Scholar 

  112. Ji B, Fan SW, Kou SJ, **a XY, Deng JL et al (2021) Microwave absorption properties of multilayer impedance gradient absorber consisting of Ti3C2Tx MXene/polymer films. Carbon 181:130–142. https://doi.org/10.1016/j.carbon.2021.05.018

    Article  Google Scholar 

  113. Liang LY, Han GJ, Li Y, Zhao B, Zhou B et al (2019) Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl Mater Interfaces 11(28):25399–25409. https://doi.org/10.1021/acsami.9b07294

    Article  Google Scholar 

  114. Wang L, Qiu H, Song P, Zhang YL, Lu YJ et al (2019) 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Compos A Appl Sci Manuf 123:293–300. https://doi.org/10.1016/j.compositesa.2019.05.030

    Article  Google Scholar 

  115. Huang K, Chen MM, He G, Hu XY, He WQ et al (2020) Stretchable microwave absorbing and electromagnetic interference shielding foam with hierarchical buckling induced by solvent swelling. Carbon 157:466–477. https://doi.org/10.1016/j.carbon.2019.10.059

    Article  Google Scholar 

  116. Zhan YF, **a L, Yang H, Zhou N, Ma GS et al (2021) Tunable electromagnetic wave absorbing properties of carbon nanotubes/carbon fiber composites synthesized directly and rapidly via an innovative induction heating technique. Carbon 175:101–111. https://doi.org/10.1016/j.carbon.2020.12.080

    Article  Google Scholar 

  117. Sun BB, Sun SJ, He P, Mi HY, Dong BB et al (2021) Asymmetric layered structural design with segregated conductive network for absorption-dominated high-performance electromagnetic interference shielding. Chem Eng J 416:129083. https://doi.org/10.1016/j.cej.2021.129083

    Article  Google Scholar 

  118. **ang Z, Zhu XJ, Dong YY, Zhang X, Shi YY et al (2021) Enhanced electromagnetic wave absorption of magnetic Co nanoparticles/CNTs/EG porous composites with waterproof, flame-retardant and thermal management functions. J Mater Chem A 9(32):17538–17552. https://doi.org/10.1039/d1ta05181d

    Article  Google Scholar 

  119. Rojas JA, Ribeiro B, Rezende MC (2020) Influence of serrated edge and rectangular strips of MWCNT buckypaper on the electromagnetic properties of glass fiber/epoxy resin composites. Carbon 160:317–327. https://doi.org/10.1016/j.carbon.2020.01.036

    Article  Google Scholar 

  120. Liang CB, Song P, Qiu H, Huangfu YMF, Lu YJ et al (2019) Superior electromagnetic interference shielding performances of epoxy composites by introducing highly aligned reduced graphene oxide films. Compos A Appl Sci Manuf 124:105512. https://doi.org/10.1016/j.compositesa.2019.105512

    Article  Google Scholar 

  121. Liang CB, Qiu H, Han YY, Gu HB, Song P et al (2019) Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J Mater Chem C 7(9):2725–2733. https://doi.org/10.1039/c8tc05955a

    Article  Google Scholar 

  122. Kashani H, Giroux M, Johnson I, Han J, Wang C et al (2019) Unprecedented electromagnetic interference shielding from three-dimensional bi-continuous nanoporous graphene. Matter 1(4):1077–1087. https://doi.org/10.1016/j.matt.2019.07.021

    Article  Google Scholar 

  123. Wang HY, Zhang YL, Ji CG, Zhang C, Liu D et al (2019) Transparent perfect microwave absorber employing asymmetric resonance cavity. Adv Sci 6(19):1901320. https://doi.org/10.1002/advs.201901320

    Article  Google Scholar 

  124. Liang CB, Song P, Qiu H, Zhang YL, Ma XT et al (2019) Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 11(46):22590–22598. https://doi.org/10.1039/c9nr06022g

    Article  Google Scholar 

  125. Song P, Liang CB, Wang L, Qiu H, Gu HB et al (2019) Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide. Compos Sci Technol 181:107698. https://doi.org/10.1016/j.compscitech.2019.107698

    Article  Google Scholar 

  126. Kim J, Lee S, Kim C, Park Y, Kim MH et al (2020) Electromagnetic interference shield of highly thermal-conducting, light-weight, and flexible electrospun nylon 66 nanofiber-silver multi-layer film. Polymers 12(8):1805. https://doi.org/10.3390/polym12081805

    Article  Google Scholar 

  127. Zhang N, Wang Z, Song RG, Wang QL, Chen HY et al (2019) Flexible and transparent graphene/silver-nanowires composite film for high electromagnetic interference shielding effectiveness. Sci Bull 64(8):540–546. https://doi.org/10.1016/j.scib.2019.03.028

    Article  Google Scholar 

  128. Lin S, Liu JC, Wang QM, Zu D, Wang HY et al (2019) Highly robust, flexible, and large-scale 3D-metallized sponge for high-performance electromagnetic interference shielding. Adv Mater Technol 5(2):1900761. https://doi.org/10.1002/admt.201900761

    Article  Google Scholar 

  129. Zhang M, Han C, Cao WQ, Cao MS, Yang HJ et al (2020) A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett 13:27. https://doi.org/10.1007/s40820-020-00552-9

    Article  Google Scholar 

  130. Liu XL, Xue JM, Yang F, Ye F, Fan XM et al (2020) Design and fabrication of Al2O3f/SiCN composite with excellent microwave absorbing and mechanical properties. J Am Ceram Soc 103(11):6255–6264. https://doi.org/10.1111/jace.17326

    Article  Google Scholar 

  131. Wang L, Qiu H, Liang CB, Song P, Han YX et al (2019) Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon 141:506–514. https://doi.org/10.1016/j.carbon.2018.10.003

    Article  Google Scholar 

  132. Kazakova MA, Semikolenova NV, Korovin EY, Zhuravlev VA, Selyutin AG et al (2021) Co/multi-walled carbon nanotubes/polyethylene composites for microwave absorption: tuning the effectiveness of electromagnetic shielding by varying the components ratio. Compos Sci Technol 207:108731. https://doi.org/10.1016/j.compscitech.2021.108731

    Article  Google Scholar 

  133. Jiang S, Qian K, Yu KJ, Zhou HF, Weng YX et al (2020) Controllable synthesis and microwave absorption properties of Fe3O4@f-GNPs nanocomposites. Compos Commun 20:100363. https://doi.org/10.1016/j.coco.2020.100363

    Article  Google Scholar 

  134. Gao S, Yang SH, Wang HY, Wang GS, Yin PG (2020) Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C. Carbon 162:438–444. https://doi.org/10.1016/j.carbon.2020.02.031

    Article  Google Scholar 

  135. Ma XK, Yin XW, Fan XM, Zhang M, Cheng LF (2020) Evolution of mechanical and electromagnetic interference shielding properties of C/SiC during oxidation at 700 ℃. Carbon 157:1–11. https://doi.org/10.1016/j.carbon.2019.09.088

    Article  Google Scholar 

  136. Guo YQ, Pan LL, Yang XT, Ruan KP, Han YX et al (2019) Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology. Compos A Appl Sci Manuf 124:105484. https://doi.org/10.1016/j.compositesa.2019.105484

    Article  Google Scholar 

  137. Liu LX, Chen W, Zhang HB, Wang QW, Guan FL et al (2019) Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv Func Mater 29(44):1905197. https://doi.org/10.1002/adfm.201905197

    Article  Google Scholar 

  138. Zhou ZH, Song QC, Huang BX, Feng SY, Lu CH (2021) Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano 15(7):12405–12417. https://doi.org/10.1021/acsnano.1c04526

    Article  Google Scholar 

  139. Wan YZ, **ong PX, Liu JZ, Feng FF, Xun XW et al (2021) Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano 15(5):8439–8449. https://doi.org/10.1021/acsnano.0c10666

    Article  Google Scholar 

  140. Geng L, Zhu PX, Wei YJ, Guo RH, **ang C et al (2019) A facile approach for coating Ti3C2Tx on cotton fabric for electromagnetic wave shielding. Cellulose 26:2833–2847. https://doi.org/10.1007/s10570-019-02284-5

    Article  Google Scholar 

  141. Li YH, Chen YA, Liu Y, Zhang CZ, Qi HS (2021) Holocellulose nanofibrils assisted exfoliation to prepare MXene-based composite film with excellent electromagnetic interference shielding performance. Carbohyd Polym 274:118652. https://doi.org/10.1016/j.carbpol.2021.118652

    Article  Google Scholar 

  142. Zhu M, Yan XX, Xu HL, Xu YJ, Kong L (2021) Ultralight, compressible, and anisotropic MXene@wood nanocomposite aerogel with excellent electromagnetic wave shielding and absorbing properties at different directions. Carbon 182:806–814. https://doi.org/10.1016/j.carbon.2021.06.054

    Article  Google Scholar 

  143. Wang ZX, Han XS, Han XW, Chen ZB, Wang SJ et al (2021) MXene/wood-derived hierarchical cellulose scaffold composite with superior electromagnetic shielding. Carbohyd Polym 254:117033. https://doi.org/10.1016/j.carbpol.2020.117033

    Article  Google Scholar 

  144. Wang L, Song P, Lin CT, Kong J, Gu JW (2020) 3D shapeable, superior electrically conductive cellulose nanofibers/ Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research 4093732. https://doi.org/10.34133/2020/4093732

  145. Wu N, Zeng ZH, Kummer N, Han DX, Zenobi R et al (2021) Ultrafine cellulose nanofiber-assisted physical and chemical cross-linking of MXene sheets for electromagnetic interference shielding. Small Methods 5(12):2100889. https://doi.org/10.1002/smtd.202100889

    Article  Google Scholar 

  146. Liang CB, Qiu H, Song P, Shi XT, Kong J et al (2020) Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci Bullet 65(8):616–622. https://doi.org/10.1016/j.scib.2020.02.009

    Article  Google Scholar 

  147. Zeng ZH, Wang CX, Siqueira G, Han DX, Huch A et al (2020) Nyström. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv Sci 7(15), 2000979. https://doi.org/10.1002/advs.202000979

  148. Wang L, Shi XT, Zhang JL, Zhang YL, Gu JW (2020) Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J Mater Sci Technol 52:119–126. https://doi.org/10.1016/j.jmst.2020.03.029

    Article  Google Scholar 

  149. Song P, Liu B, Liang CB, Ruan KP, Qiu H et al (2021) Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMs composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Letters 13:91. https://doi.org/10.1007/s40820-021-00624-4

    Article  Google Scholar 

  150. Zhou ZH, Li MZ, Huang HD, Li L, Yang B et al (2020) Structuring hierarchically porous architecture in biomass-derived carbon aerogels for simultaneously achieving high electromagnetic interference shielding effectiveness and high absorption coefficient. ACS Appl Mater Interfaces 12(16):18840–18849. https://doi.org/10.1021/acsami.0c01190

    Article  Google Scholar 

  151. Wang XX, Shu JC, Cao WQ, Zhang M, Yuan J et al (2019) Eco-mimetic nanoarchitecture for green EMI shielding. Chem Eng J 369:1068–1077. https://doi.org/10.1016/j.cej.2019.03.164

    Article  Google Scholar 

  152. Zeng ZH, Wu TT, Han DX, Ren Q, Siqueira G et al (2020) Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14(3):2927–2938. https://doi.org/10.1021/acsnano.9b07452

    Article  Google Scholar 

  153. Liang CB, Ruan KP, Zhang YL, Gu JW (2020) Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances. ACS Appl Mater Interfaces 12(15):18023–18031. https://doi.org/10.1021/acsami.0c04482

    Article  Google Scholar 

  154. Zhang TC, Lv D, Liu RT, Wang DY, Li TT et al (2021) Develo** a superhydrophobic absorption-dominated electromagnetic shielding material by building clustered Fe3O4 nanoparticles on the copper-coated cellulose paper. ACS Sustain Chem Eng 9(19):6574–6585. https://doi.org/10.1021/acssuschemeng.0c09068

    Article  Google Scholar 

  155. Qi YL, Yin PF, Zhang LM, Wang J, Feng X et al (2019) Novel microwave absorber of NixMn1–xFe2O4/carbonized chaff (x = 0.3, 0.5, and 0.7) based on biomass. ACS Omega 4(7):12376–12384. https://doi.org/10.1021/acsomega.9b01568

  156. Fei Y, Liang M, Zhou T, Chen Y, Zou HW (2020) Unique carbon nanofiber@ Co/C aerogel derived bacterial cellulose embedded zeolitic imidazolate frameworks for high-performance electromagnetic interference shielding. Carbon 167:575–584. https://doi.org/10.1016/j.carbon.2020.06.013

    Article  Google Scholar 

  157. Liu CY, Qiu ZC, Yu DW, Kirk DW, Xu YJ (2017) Fabrication of porous silicon carbide ceramics with high electromagnetic interference shielding effectiveness. ChemistrySelect 2(34):11131–11136. https://doi.org/10.1002/slct.201702080

    Article  Google Scholar 

  158. Liu K, Liu W, Li W, Duan YX, Zhou KY et al (2022) Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv Compos Hybrid Mater 5:1078–1089. https://doi.org/10.1007/s42114-022-00425-2

    Article  Google Scholar 

  159. Huo YJ, Guo D, Yang JL, Chang YK, Mu CP et al (2022) Flexible graphene/bacterial celluloses Janus structure film with excellent electromagnetic interference shielding and joule heating performance. Mater Chem Phys 287:126318. https://doi.org/10.1016/j.matchemphys.2022.126318

    Article  Google Scholar 

  160. Liang C, He J, Zhang Y, Zhang W, Liu C et al (2022) MoF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding. Compos Sci Technol 224:109445. https://doi.org/10.1016/j.compscitech.2022.109445

    Article  Google Scholar 

  161. **ong CY, Zheng CM, Li BB, Ni YH (2022) Wood-based micro-spring composite elastic material with excellent electrochemical performance, high elasticity and elastic recovery rate applied in supercapacitors and sensors. Ind Crops Prod 178:114565. https://doi.org/10.1016/j.indcrop.2022.114565

    Article  Google Scholar 

  162. Dong XF, Gan WT, Shang Y, Tang JF, Wang YX et al (2022) Low-value wood for sustainable high-performance structural materials. Nature Sustain 5:628–635. https://doi.org/10.1038/s41893-022-00887-8

    Article  Google Scholar 

  163. **ong CY, Wang TX, Zhang YK, Li BB, Han Q et al (2021) Li–Na metal compounds inserted into porous natural wood as a bifunctional hybrid applied in supercapacitors and electrocatalysis. Int J Hydrogen Energy 47(4):2389–2398. https://doi.org/10.1016/j.ijhydene.2021.10.168

    Article  Google Scholar 

  164. Ram F, Garemark J, Li YY, Pettersson T, Berglund LA (2022) Functionalized wood veneers as vibration sensors: exploring wood piezoelectricity and hierarchical structure effects. ACS Nano 16(10):15805–15813. https://doi.org/10.1021/acsnano.2c04668

    Article  Google Scholar 

  165. **ong CY, Li BB, Duan C, Dai L, Nie S et al (2021) Carbonized wood cell chamber-reduced graphene oxide@PVA flexible conductive material for supercapacitor, strain sensing and moisture-electric generation applications. Cheml Eng J 418:129518. https://doi.org/10.1016/j.cej.2021.129518

  166. Elustondo D, Gaunt D (2022) A new approach to assess the retained value of functionalized and stabilized wood products through aging. Forests 13(5):643. https://doi.org/10.3390/f13050643

    Article  Google Scholar 

  167. **ong CY, Li BB, Dang WH, Zhao W, Duan C et al (2020) Co/CoS nanofibers with flower-like structure immobilized in carbonated porous wood as bifunctional material for high-performance supercapacitors and catalysts. Mater Des 195:108942. https://doi.org/10.1016/j.matdes.2020.108942

    Article  Google Scholar 

  168. Ruan JC, Chang ZX, Rong HW, Alomar TS, Zhu DP et al (2023) High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213:118208. https://doi.org/10.1016/j.carbon.2023.118208

    Article  Google Scholar 

  169. Zhu SL, Biswas SK, Qiu Z, Yue YY, Fu QL et al (2022) Transparent wood-based functional materials via a top-down approach. Prog Mater Sci 132:101025. https://doi.org/10.1016/j.pmatsci.2022.101025

    Article  Google Scholar 

  170. **, shape-memory, and self-healing properties for applications in high-performance supercapacitors, catalysts, and sensors. J Mater Chem A 8(21):10898–10908. https://doi.org/10.1039/d0ta03664a

    Article  Google Scholar 

  171. Wang TX, **ong CY, Zhang YK, Wang B, **ong Q et al (2023) Multi-layer hierarchical cellulose nanofibers/carbon nanotubes/vinasse activated carbon composite materials for supercapacitors and electromagnetic interference shielding. Nano Res. https://doi.org/10.1007/s12274-023-6145-5

    Article  Google Scholar 

Download references

Funding

This work was supported by the fund of the National Natural Science Foundation of China (22078184, 22378249, and 22178208), China Postdoctoral Science Foundation (2019M653853XB), and Natural Science Advance Research Foundation of Shaanxi University of Science and Technology (2018QNBJ-03).

Author information

Authors and Affiliations

Authors

Contributions

Chuanyin **ong wrote the main manuscript text and reviewed the manuscript. Qing **ong prepared Figs. 1, 2, 3 and Tables 1, 2. Mengjie Zhao prepared Figs. 4, 5, 6, 7. Bo Wang prepared Figs. 8, 9, 10, 11, 12. Lei Dai and Yonghao Ni reviewed the manuscript.

Corresponding author

Correspondence to Chuanyin **ong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ong, C., **ong, Q., Zhao, M. et al. Recent advances in non-biomass and biomass-based electromagnetic shielding materials. Adv Compos Hybrid Mater 6, 205 (2023). https://doi.org/10.1007/s42114-023-00774-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00774-6

Keywords

Navigation