Log in

Recent progress on green electromagnetic shielding materials based on macro wood and micro cellulose components from natural agricultural and forestry resources

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recent research efforts in the field of electromagnetic interference shielding (EMI) materials have focused on biomass as a green and sustainable resource. More specifically, wood and cellulose nano fiber (CNF) have many advantages, some of which include lightweight, porosity, widespread availability, low cost, and easy processing. These favorable properties have led researchers to consider these types of biomass as an EMI shielding material with great potential. At present, while many excellent published works in EMI shielding materials have investigated wood and CNF, this research area is still new, compared with non-biomass EMI shielding materials. More specifically, there is still a lack of in-depth research and summary on the preparation process, pore structure regulation, component optimization, and other factors affecting the EMI shielding of wood and CNF based EMI shielding materials. Thus, this review paper presents a comprehensive summary of recent research on wood and CNF based EMI shielding materials in recent three years in terms of the preparation methods, material structure design, component synergy, and EMI mechanism, and a forward future perspective for existing problems, challenges, and development trend. The ultimate goal is to provide a comprehensive and informative reference for the further development and exploration of biomass EMI shielding materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Srivastava, S. K.; Manna, K. Recent advancements in the electromagnetic interference shielding performance of nanostructured materials and their nanocomposites: A review. J. Mater. Chem. A 2022, 10, 7431–7496.

    Article  CAS  Google Scholar 

  2. Zhang, Y. L.; Gu, J. W. A perspective for develo** polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.

    Article  Google Scholar 

  3. Zhao, H.; Yun, J.; Zhang, Y. L.; Ruan, K. P.; Huang, Y. S.; Zheng, Y. P.; Chen, L. X.; Gu, J. W. Pressure-induced self-interlocked structures for expanded graphite composite papers achieving prominent EMI shielding effectiveness and outstanding thermal conductivities. ACS Appl. Mater. Interfaces 2022, 14, 3233–3243.

    Article  CAS  Google Scholar 

  4. Wang, Y. C.; Yao, L. H.; Zheng, Q.; Cao, M. S. Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res., in press, https://doi.org/10.1007/s12274-022-4428-x.

  5. Gu, J. W.; Xu, S.; Zhuang, Q.; Tang, Y. S.; Kong, J. Hyperbranched polyborosilazane and boron nitride modified cyanate ester composite with low dielectric loss and desirable thermal conductivity. IEEE Trans. Dielect. Elect. Insul. 2017, 24, 784–790.

    Article  CAS  Google Scholar 

  6. Dilli, R. Implications of mm wave radiation on human health: State of the art threshold levels. IEEE Access 2021, 9, 13009–13021.

    Article  Google Scholar 

  7. Yoo, Y. J.; Heo, S. Y.; Kim, Y. J.; Ko, J. H.; Mira, Z. F.; Song, Y. M. Functional photonic structures for external interaction with flexible/wearable devices. Nano Res. 2021, 14, 2904–2918.

    Article  CAS  Google Scholar 

  8. Zeng, Z. H.; Wu, N.; Wei, J. J.; Yang, Y. F.; Wu, T. T.; Li, B.; Hauser, S. B.; Yang, W. D.; Liu, J. R.; Zhao, S. Y. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 2022, 14, 59.

    Article  CAS  Google Scholar 

  9. Liang, C. B.; He, J.; Zhang, Y. L.; Zhang, W.; Liu, C. L.; Ma, X. T.; Liu, Y. Q.; Gu, J. W. MOF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding. Compos. Sci Technol. 2022, 224, 109445.

    Article  CAS  Google Scholar 

  10. Chen, Y.; Li, J. Z.; Li, T.; Zhang, L. K.; Meng, F. B. Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon 2021, 180, 163–184.

    Article  CAS  Google Scholar 

  11. Xu, Y. D.; Lin, Z. Q.; Yang, Y. Q.; Duan, H. J.; Zhao, G. Z.; Liu, Y. Q.; Hu, Y. G.; Sun, R.; Wong, C. P. Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Mater. Horiz. 2022, 9, 708–719.

    Article  CAS  Google Scholar 

  12. Zhao, J.; Lu, Y. J.; Ye, W. L.; Wang, L.; Liu, B.; Lv, S. S.; Chen, L. X.; Gu, J. W. Enhanced wave-absorbing performances of silicone rubber composites by incorporating C−SnO2−MWCNT absorbent with ternary heterostructure. Ceram. Int. 2019, 45, 20282–20289.

    Article  CAS  Google Scholar 

  13. **ong, C. Y.; Li, M. R.; Han, Q.; Zhao, W.; Dai, L.; Ni, Y. H. Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances. J. Mater. Sci. Technol. 2022, 97, 190–200.

    Article  Google Scholar 

  14. Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)−(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

    Article  CAS  Google Scholar 

  15. Liu, C.; Cai, J.; Dang, P. Z.; Li, X. H.; Zhang, D. Y. Highly stretchable electromagnetic interference shielding materials made with conductive microcoils confined to a honeycomb structure. ACS Appl. Mater. Interfaces 2020, 12, 12101–12108.

    Article  CAS  Google Scholar 

  16. Zhang, W. B.; Wei, L. F.; Ma, Z. L.; Fan, Q. Q.; Ma, J. Z. Advances in waterborne polymer/carbon material composites for electromagnetic interference shielding. Carbon 2021, 177, 412–426.

    Article  CAS  Google Scholar 

  17. Ma, Z. L.; **ang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

    CAS  Google Scholar 

  18. Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx−(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

    Article  CAS  Google Scholar 

  19. Jia, L. C.; Jia, X. X.; Sun, W. J.; Zhang, Y. P.; Xu, L.; Yan, D. X.; Su, H. J.; Li, Z. M. Stretchable liquid metal-based conductive textile for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2020, 12, 53230–53238.

    Article  CAS  Google Scholar 

  20. Wang, L.; Qiu, H.; Liang, C. B.; Song, P.; Han, Y. X.; Han, Y. X.; Gu, J. W.; Kong, J.; Pan, D.; Guo, Z. H. Electromagnetic interference shielding MWCNT−Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon 2019, 141, 506–514.

    Article  CAS  Google Scholar 

  21. Zhang, M. K.; Zhang, P. J.; Zhang, C. L.; Wang, Y. S.; Chang, H.; Rao, W. Porous and anisotropic liquid metal composites with tunable reflection ratio for low-temperature electromagnetic interference shielding. Appl. Mater. Today 2020, 19, 100612.

    Article  Google Scholar 

  22. Ma, Z. L.; Kang, S. L.; Ma, J. Z.; Shao, L.; Zhang, Y. L.; Liu, C.; Wei, A. J.; **ang, X. L.; Wei, L. F.; Gu, J. W. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 8368–8382.

    Article  CAS  Google Scholar 

  23. Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

    Article  CAS  Google Scholar 

  24. Yu, D. H.; Liao, Y.; Song, Y. C.; Wang, S. L.; Wan, H. Y.; Zeng, Y. H.; Yin, T.; Yang, W. H.; He, Z. Z. A super-stretchable liquid metal foamed elastomer for tunable control of electromagnetic waves and thermal transport. Adv. Sci. 2020, 7, 2000177.

    Article  CAS  Google Scholar 

  25. Yang, X. T.; Fan, S. G.; Li, Y.; Guo, Y. Q.; Li, Y. G.; Ruan, K. P.; Zhang, S. M.; Zhang, J. L.; Kong, J.; Gu, J. W. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A Appl. Sci. Manuf. 2020, 128, 105670.

    Article  CAS  Google Scholar 

  26. Budumuru, S.; Anuradha, M. S. Electromagnetic shielding and mechanical properties of AL6061 metal matrix composite at X-band for oblique incidence. Adv. Compos. Hybrid Mater. 2021, 4, 1113–1121.

    Article  CAS  Google Scholar 

  27. Zhao, J.; Zhang, J. L.; Wang, L.; Li, J. K.; Feng, T.; Fan, J. C.; Chen, L. X.; Gu, J. W. Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure. Compos. Commun. 2020, 22, 100486.

    Article  Google Scholar 

  28. Liu, H. Z.; Xu, Y.; Zhao, X. D.; Han, D.; Zhao, F.; Yang, Q. W. Lightweight leaf-structured carbon nanotubes/graphene foam and the composites with polydimethylsiloxane for electromagnetic interference shielding. Carbon 2022, 191, 183–194.

    Article  CAS  Google Scholar 

  29. Wang, L.; Shi, X. T.; Zhang, J. L.; Zhang, Y. L.; Gu, J. W. Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J. Mater. Sci. Technol. 2020, 52, 119–126.

    Article  CAS  Google Scholar 

  30. Yang, R. L.; Gui, X. C.; Yao, L.; Hu, Q. M.; Yang, L. L.; Zhang, H.; Yao, Y. T.; Mei, H.; Tang, Z. K. Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 2021, 13, 66.

    Article  Google Scholar 

  31. Liang, C. B.; Song, P.; Ma, A. J.; Shi, X. T.; Gu, H. B.; Wang, L.; Qiu, H.; Kong, J.; Gu, J. W. Highly oriented three-dimensional structures of Fe3O4 decorated CNTs/reduced graphene oxide foam/epoxy nanocomposites against electromagnetic pollution. Compos. Sci. Technol. 2019, 181, 107683.

    Article  CAS  Google Scholar 

  32. Wang, P.; Guo, B.; Zhang, Z.; Gao, W. N.; Zhou, W.; Ma, H. X.; Wu, W. Y.; Han, J. F.; Zhang, R. J. Eco-friendly non-acid intercalation and exfoliation of graphite to graphene nanosheets in the binary-peroxidant system for EMI shielding. Chin. Chem. Lett. 2021, 32, 3469–3473.

    Article  CAS  Google Scholar 

  33. Zhao, J.; Zhang, J. L.; Wang, L.; Lyu, S.; Ye, W. L.; Xu, B. B.; Qiu, H.; Chen, L. X.; Gu, J. W. Fabrication and investigation on ternary heterogeneous MWCNT@TiO2−C fillers and their silicone rubber wave-absorbing composites. Compos. Part A Appl. Sci. Manuf. 2020, 129, 105714.

    Article  CAS  Google Scholar 

  34. Zuo, S. D.; Liang, Y. Y.; Yang, H. Z.; Ma, X. X.; Ge, S. B.; Wu, Y. J.; Fei, B. H.; Guo, M.; Ahamad, T.; Le, H. S. et al. High strength composites of carbon fiber sheets-veneers sandwich-structure for electromagnetic interference shielding materials. Prog. Org. Coat. 2022, 165, 106736.

    Article  CAS  Google Scholar 

  35. Liang, C. B.; Qiu, H.; Han, Y. Y.; Gu, H. B.; Song, P.; Wang, L.; Kong, J.; Cao, D. P.; Gu, J. W. Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J. Mater. Chem. C 2019, 7, 2725–2733.

    Article  CAS  Google Scholar 

  36. Wang, Z.; Kong, Q. Q.; Yi, Z. L.; **e, L. J.; Jia, H.; Chen, J. P.; Liu, D.; Jiang, D.; Chen, C. M. Electromagnetic interference shielding material for super-broadband: Multi-walled carbon nanotube/silver nanowire film with an ultrathin sandwich structure. J. Mater. Chem. A 2021, 9, 25999–26009.

    Article  CAS  Google Scholar 

  37. Song, P.; Liang, C. B.; Wang, L.; Qiu, H.; Gu, H. B.; Kong, J.; Gu, J. W. Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide. Compos. Sci. Technol. 2019, 181, 107698.

    Article  CAS  Google Scholar 

  38. Wang, L.; Ma, Z. L.; Zhang, Y. L.; Qiu, H.; Ruan, K. P.; Gu, J. W. Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 2022, 4, 200–210.

    Article  CAS  Google Scholar 

  39. Duan, H. J.; Zhu, H. X.; Gao, J. F.; Yan, D. X.; Dai, K.; Yang, Y. Q.; Zhao, G. Z.; Liu, Y. Q.; Li, Z. M. Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 2020, 8, 9146–9159.

    Article  CAS  Google Scholar 

  40. Wang, L.; Chen, L. X.; Song, P.; Liang, C. B.; Lu, Y. J.; Qiu, H.; Zhang, Y. L.; Kong, J.; Gu, J. W. Fabrication on the annealed Ti3C2Tx MXene/epoxy nanocomposites for electromagnetic interference shielding application. Compos. Part B Eng. 2019, 171, 111–118.

    Article  CAS  Google Scholar 

  41. Yao, B.; Hong, W.; Chen, T. W.; Han, Z. B.; Xu, X. W.; Hu, R. C.; Hao, J. Y.; Li, C. H.; Li, H.; Perini, S. E. et al. Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 2020, 32, 1907499.

    Article  CAS  Google Scholar 

  42. Guo, Y. Q.; Qiu, H.; Ruan, K. P.; Zhang, Y. L.; Gu, J. W. Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 2022, 14, 26.

    Article  CAS  Google Scholar 

  43. Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248–255.

    Article  CAS  Google Scholar 

  44. Lai, H. R.; Bai, C. R.; Wang, Y. Q.; Fan, Z. Y.; Yuan, Y.; Too, H. Highly crosslinked conductive polymer nanofibrous films for high-rate solid-state supercapacitors and electromagnetic interference shielding. Adv. Mater. Interfaces 2022, 9, 2102115.

    Article  CAS  Google Scholar 

  45. Zhang, L. K.; Chen, Y.; Liu, Q.; Deng, W. T.; Yue, Y. Q.; Meng, F. B. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding. J. Mater. Sci. Technol. 2022, 111, 57–65.

    Article  Google Scholar 

  46. Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Flexible Ti3C2Tx/(aramid nanofiber/PVA) composite films for superior electromagnetic interference shielding. Research 2022, 2022, 9780290.

    CAS  Google Scholar 

  47. Li, T.; Zhi, D. D.; Guo, Z. H.; Li, J. Z.; Chen, Y.; Meng, F. B. 3D porous biomass-derived carbon materials: Biomass sources, controllable transformation and microwave absorption application. Green Chem. 2022, 24, 647–674.

    Article  CAS  Google Scholar 

  48. Liang, C. B.; Song, P.; Qiu, H.; Huangfu, Y. M.; Lu, Y. J.; Wang, L.; Kong, J.; Gu, J. W. Superior electromagnetic interference shielding performances of epoxy composites by introducing highly aligned reduced graphene oxide films. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105512.

    Article  CAS  Google Scholar 

  49. Kang, H. L.; Luo, S.; Du, H. Y.; Han, L. S.; Li, D. H.; Li, L.; Fang, Q. H. Bio-based Eucommia ulmoides gum composites with high electromagnetic interference shielding performance. Polymers 2022, 14, 970.

    Article  CAS  Google Scholar 

  50. Chen, L. X.; Zhao, J.; Wang, L.; Peng, F.; Liu, H.; Zhang, J. X.; Gu, J. W.; Guo, Z. H. In-situ pyrolyzed polymethylsilsesquioxane multi-walled carbon nanotubes derived ceramic nanocomposites for electromagnetic wave absorption. Ceram. Int. 2019, 45, 11756–11764.

    Article  CAS  Google Scholar 

  51. Zhang, H. B.; Liu, T. T.; Huang, Z. H.; Cheng, J. Y.; Wang, H. H.; Zhang, D. Q.; Ba, X. W.; Zheng, G. P.; Yan, M.; Cao, M. S. Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. J. Materiomics 2022, 8, 327–334.

    Article  Google Scholar 

  52. Liang, C. B.; Song, P.; Qiu, H.; Zhang, Y. L.; Ma, X. T.; Qi, F. Q.; Gu, H. B.; Kong, J.; Cao, D. P.; Gu, J. W. Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 2019, 11, 22590–22598.

    Article  CAS  Google Scholar 

  53. Huang, S.; Wang, L.; Li, Y. C.; Liang, C. B.; Zhang, J. L. Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 2021, 138, 50649.

    Article  CAS  Google Scholar 

  54. Wang, L.; Qiu, H.; Song, P.; Zhang, Y. L.; Lu, Y. J.; Liang, C. B.; Kong, J.; Chen, L. X.; Gu, J. W. 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Compos. Part A Appl. Sci. Manuf. 2019, 123, 293–300.

    Article  CAS  Google Scholar 

  55. Zachariah, S. M.; Grohens, Y.; Kalarikkal, N.; Thomas, S. Hybrid materials for electromagnetic shielding: A review. Polym. Compos., in press, https://doi.org/10.1002/pc.26595.

  56. Guo, Y. Q.; Pan, L. L.; Yang, X. T.; Ruan, K. P.; Han, Y. X.; Kong, J.; Gu, J. W. Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105484.

    Article  CAS  Google Scholar 

  57. Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

    Article  CAS  Google Scholar 

  58. Devi, N.; Ray, S. S. Electromagnetic interference cognizance and potential of advanced polymer composites toward electromagnetic interference shielding: A review. Polym. Eng. Sci. 2022, 62, 591–621.

    Article  CAS  Google Scholar 

  59. Yu, J. W.; Gu, W. H.; Zhao, H. Q.; Ji, G. B. Lightweight, flexible and freestanding PVA/PEDOT: PSS/Ag NWs film for high–performance electromagnetic interference shielding. Sci. China Mater. 2021, 64, 1723–1732.

    Article  CAS  Google Scholar 

  60. Zhang, Y. L.; Wang, L.; Zhang, J. L.; Song, P.; **ao, Z. R.; Liang, C. B.; Qiu, H.; Kong, J.; Gu, J. W. Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films. Compos. Sci. Technol. 2019, 183, 107833.

    Article  CAS  Google Scholar 

  61. Zhang, R. X.; Wang, L.; Xu, C. Y.; Liang, C. Y.; Liu, X. H.; Zhang, X. F.; Che, R. C. Vortex tuning magnetization configurations in porous Fe3O4 nanotube with wide microwave absorption frequency. Nano Res., in press, https://doi.org/10.1007/s12274-022-4401-8.

  62. Huangfu, Y. M.; Ruan, K. P.; Qiu, H.; Lu, Y. J.; Liang, C. B.; Kong, J.; Gu, J. W. Fabrication and investigation on the PANI/MWCNT/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos. Part A Appl. Sci. Manuf. 2019, 121, 265–272.

    Article  CAS  Google Scholar 

  63. Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

    Article  CAS  Google Scholar 

  64. Zhou, M.; Gu, W. H.; Wang, G. H.; Zheng, J.; Pei, C. C.; Fan, F. Y.; Ji, G. B. Sustainable wood-based composites for microwave absorption and electromagnetic interference shielding. J. Mater. Chem. A 2020, 8, 24267–24283.

    Article  CAS  Google Scholar 

  65. Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 2020, 30, 2000883.

    Article  CAS  Google Scholar 

  66. Chen, Y. M.; Yang, Y.; **ong, Y.; Zhang, L.; Xu, W. H.; Duan, G. G.; Mei, C. T.; Jiang, S. H.; Rui, Z. H.; Zhang, K. Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 2021, 38, 101204.

    Article  CAS  Google Scholar 

  67. Liang, C. B.; Gu, Z. J.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 2021, 13, 181.

    Article  CAS  Google Scholar 

  68. Liu, H. G.; Wu, S. Q.; You, C. Y.; Tian, N.; Li, Y.; Chopra, N. Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding. Carbon 2021, 172, 569–596.

    Article  CAS  Google Scholar 

  69. Gezahegn, S.; Garcia, C.; Lai, R. S.; Zhou, X. X.; Tjong, J.; Thomas, S. C.; Huang, F.; Jaffer, S.; Yang, W. M.; Sain, M. Benign species-tuned biomass carbonization to nano-layered graphite for EMI filtering and greener energy storage functions. Renew. Energy 2021, 164, 1039–1051.

    Article  CAS  Google Scholar 

  70. Liu, F.; Li, Y. C.; Hao, S.; Cheng, Y.; Zhan, Y. H.; Zhang, C. M.; Meng, Y. Y.; **e, Q.; **a, H. S. Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding. Carbohydr. Polym. 2020, 243, 116467.

    Article  CAS  Google Scholar 

  71. Jia, X. C.; Shen, B.; Chen, J. L.; Wang, G. Q.; Sun, Z. P.; Zheng, W. G. Multifunctional TPU composite foams with embedded biomass-derived carbon networks for electromagnetic interference shielding. Compos. Commun. 2022, 30, 101062.

    Article  Google Scholar 

  72. Qi, F. Q.; Wang, L.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 2021, 21, 100512.

    Article  CAS  Google Scholar 

  73. Wu, N. N.; Hu, Q.; Wei, R. B.; Mai, X. M.; Naik, N.; Pan, D.; Guo, Z. H.; Shi, Z. J. Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects. Carbon 2021, 176, 88–105.

    Article  CAS  Google Scholar 

  74. Liang, C. B.; Du, Y. Z.; Wang, Y. Y.; Ma, A. J.; Huang, S.; Ma, Z. L. Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 2021, 4, 979–988.

    Article  CAS  Google Scholar 

  75. Chen, J. Q.; Zhu, Z. D.; Zhang, H.; Tian, S. L.; Fu, S. Y. Wood-derived nanostructured hybrid for efficient flame retarding and electromagnetic shielding. Mater. Des. 2021, 204, 109695.

    Article  CAS  Google Scholar 

  76. Jia, X. C.; Shen, B.; Zhang, L. H.; Zheng, W. G. Waterproof MXene-decorated wood-pulp fabrics for high-efficiency electromagnetic interference shielding and Joule heating. Compos. Part B Eng. 2020, 198, 108250.

    Article  CAS  Google Scholar 

  77. Li, M. M.; Han, F. Y.; Jiang, S.; Zhang, M. L.; Xu, Q. Y.; Zhu, J. H.; Ge, A. X.; Liu, L. F. Lightweight cellulose nanofibril/reduced graphene oxide aerogels with unidirectional pores for efficient electromagnetic interference shielding. Adv. Mater. Interfaces 2021, 8, 2101437.

    Article  CAS  Google Scholar 

  78. **ong, C. Y.; Zheng, C. M.; Nie, S. G.; Qin, C. R.; Dai, L.; Xu, Y. J.; Ni, Y. H. Fabrication of reduced graphene oxide-cellulose nanofibers based hybrid film with good hydrophilicity and conductivity as electrodes of supercapacitor. Cellulose 2021, 28, 3733–3743.

    Article  CAS  Google Scholar 

  79. Liu, R. T.; Wang, D. Y.; **e, Y. J.; Li, J.; Wang, L. J. Flexible cellulose-based material with a higher conductivity and electromagnetic shielding performance from electroless nickel plating. Wood Sci. Technol. 2021, 55, 1693–1710.

    Article  CAS  Google Scholar 

  80. Tran, T. T. V.; Vo, D. V. N.; Nguyen, S. T.; Vu, C. M. Silver nanowires decorated recycled cigarette filters based epoxy composites with high through-plane thermal conductivity and efficient electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106485.

    Article  CAS  Google Scholar 

  81. Xu, X. R.; Wu, S. N.; Cui, J.; Yang, L. Y.; Liu, D. Y.; Zhang, Y. Z.; Chen, X.; Wu, K.; Sun, D. P. Insights into the microstructures and reinforcement mechanism of nano-fibrillated cellulose/MXene based electromagnetic interference shielding film. Cellulose 2021, 28, 3311–3325.

    Article  CAS  Google Scholar 

  82. Keplinger, T.; Wittel, F. K.; Ruggeberg, M.; Burgert, I. Wood derived cellulose scaffolds—Processing and mechanics. Adv. Mater. 2021, 33, 2001375.

    Article  CAS  Google Scholar 

  83. Guo, H. T.; Chen, Y. M.; Li, Y.; Zhou, W.; Xu, W. H.; Pang, L.; Fan, X. M.; Jiang, S. H. Electrospun fibrous materials and their applications for electromagnetic interference shielding: A review. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106309.

    Article  Google Scholar 

  84. Hosseini, E.; Arjmand, M.; Sundararaj, U.; Karan, K. Filler-free conducting polymers as a new class of transparent electromagnetic interference shields. ACS Appl. Mater. Interfaces 2020, 12, 28596–28606.

    Article  CAS  Google Scholar 

  85. Liu, Y.; Jia, Z. R.; Zhan, Q. Q.; Dong, Y. H.; Xu, Q. M.; Wu, G. L. Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res., in press, https://doi.org/10.1007/s12274-022-4287-5.

  86. Song, P.; Liu, B.; Qiu, H.; Shi, X. T.; Cao, D. P.; Gu, J. W. MXenes for polymer matrix electromagnetic interference shielding composites: A review. Compos. Commun. 2021, 24, 100653.

    Article  Google Scholar 

  87. Kamkar, M.; Ghaffarkhah, A.; Hosseini, E.; Amini, M.; Ghaderi, S.; Arjmand, M. Multilayer polymeric nanocomposites for electromagnetic interference shielding: Fabrication, mechanisms, and prospects. New J. Chem. 2021, 45, 21488.

    Article  CAS  Google Scholar 

  88. Wang, M.; Tang, X. H.; Cai, J. H.; Wu, H.; Shen, J. B.; Guo, S. Y. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon 2021, 177, 377–402.

    Article  CAS  Google Scholar 

  89. Zhang, Y. L; Yan, Y.; Qiu, H.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. A mini-review of MXene porous films: Preparation, mechanism and application. J. Mater. Sci. Technol. 2022, 103, 42–49.

    Article  Google Scholar 

  90. Liang, C. B.; Liu, Y. X.; Ruan, Y. F.; Qiu, H.; Song, P.; Kong, J.; Zhang, H. B.; Gu, J. W. Multifunctional sponges with flexible motion sensing and outstanding thermal insulation for superior electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106143.

    Article  Google Scholar 

  91. Shukla, V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 2019, 1, 1640–1671.

    Article  Google Scholar 

  92. Cheng, Y.; Zhu, W. D.; Lu, X. F.; Wang, C. Recent progress of electrospun nanofibrous materials for electromagnetic interference shielding. Compos. Commun. 2021, 27, 100823.

    Article  Google Scholar 

  93. Huangfu, Y. M.; Liang, C. B.; Han, Y. X.; Qiu, H.; Song, P.; Wang, L.; Kong, J.; Gu, J. W. Fabrication and investigation on the Fe3O4/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos. Sci. Technol. 2019, 169, 70–75.

    Article  CAS  Google Scholar 

  94. Song, P.; Qiu, H.; Wang, L.; Liu, X. Y.; Zhang, Y. L.; Zhang, J. L.; Kong, J.; Gu, J. W. Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. Sustain. Mater. Technol. 2020, 24, e00153.

    CAS  Google Scholar 

  95. Li, Z. J.; Lin, H.; Ding, S. Q.; Ling, H. L.; Wang, T.; Miao, Z. Q.; Zhang, M.; Meng, A. L.; Li, Q. D. Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 2020, 167, 148–159.

    Article  CAS  Google Scholar 

  96. Cao, M.; Deng, Y. X.; Xu, K.; Hao, X. F.; Hu, J. Y.; Yang, X. Research progress of new carbon based magnetic composite electromagnetic waveabsorbing materials. Acta Mater. Compos. Sin. 2020, 37, 3004–3016.

    Google Scholar 

  97. Pourjafar, M.; Behrooz, R.; Nayyeri, V.; Shalbafan, A. Medium density fiberboard (MDF) with efficient electromagnetic shielding: Preparation and evaluation. Bioresources 2022, 17, 1518–1532.

    Article  CAS  Google Scholar 

  98. **ong, Y.; Xu, L. L.; Yang, C. X.; Sun, Q. F.; Xu, X. J. Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. J. Mater. Chem. A 2020, 8, 18863–18871.

    Article  CAS  Google Scholar 

  99. Liu, X. M.; Liu, H. Q.; Xu, H. L.; **e, W. J.; Li, M. H.; Liu, J. X.; Liu, G. Q.; Weidenkaff, A.; Riedel, R. Natural wood templated hierarchically cellular NbC/pyrolytic carbon foams as stiff, lightweight and high-performance electromagnetic shielding materials. J. Colloid Interface Sci. 2022, 606, 1543–1553.

    Article  CAS  Google Scholar 

  100. Cheng, M. L.; Ren, W. L.; Li, H. X.; Bandaru, S.; Zhang, J.; Zhang, X. F. Multiscale collaborative coupling of wood-derived porous carbon modified by three-dimensional conductive magnetic networks for electromagnetic interference shielding. Compos. Part B Eng. 2021, 224, 109169.

    Article  CAS  Google Scholar 

  101. Dong, S.; Tang, W. K.; Hu, P. T.; Zhao, X. G.; Zhang, X. H.; Han, J. C.; Hu, P. Achieving excellent electromagnetic wave absorption capabilities by construction of MnO nanorods on porous carbon composites derived from natural wood via a simple route. ACS Sustainable Chem. Eng. 2019, 7, 11795–11805.

    Article  CAS  Google Scholar 

  102. Park, J.; Kwac, L. K.; Kim, H. G.; Shin, H. K. Fabrication and characterization of waste wood cellulose fiber/graphene nanoplatelet carbon papers for application as electromagnetic interference shielding materials. Nanomaterials 2021, 11, 2878.

    Article  CAS  Google Scholar 

  103. Hu, H. H.; Li, Y. X.; Gao, T.; Yan, S. Y.; Wu, S. T.; Bandaru, S.; Zheng, Y.; Qin, G. W.; Zhang, X. F. Sulfur-doped wood-derived porous carbon for optimizing electromagnetic response performance. Nanoscale 2021, 13, 16084–16093.

    Article  CAS  Google Scholar 

  104. Qin, G. Y.; Huang, X. X.; Yan, X.; He, Y. F.; Liu, Y. H.; **a, L.; Zhong, B. Carbonized wood with ordered channels decorated by NiCo2O4 for lightweight and high-performance microwave absorber. J. Adv. Ceram. 2022, 11, 105–119.

    Article  CAS  Google Scholar 

  105. Zhao, B.; Bai, P. W.; Wang, S.; Ji, H. Y.; Fan, B. B.; Zhang, R.; Che, R. C. High-performance joule heating and electromagnetic shielding properties of anisotropic carbon scaffolds. ACS Appl. Mater. Interfaces 2021, 13, 29101–29112.

    Article  CAS  Google Scholar 

  106. Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.

    Article  CAS  Google Scholar 

  107. Zhang, Y. L.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Pan, Y.; Yan, Y.; Gu, J. W. Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 2021, 175, 271–280.

    Article  CAS  Google Scholar 

  108. Guo, Y. Q.; Qiu, H.; Ruan, K. P.; Wang, S. S.; Zhang, Y. L.; Gu, J. W. Flexible and insulating silicone rubber composites with sandwich structure for thermal management and electromagnetic interference shielding. Compos. Sci. Technol. 2022, 219, 109253.

    Article  CAS  Google Scholar 

  109. Liang, C. B.; Qiu, H.; Song, P.; Shi, X. T.; Kong, J.; Gu, J. W. Ultralight MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci. Bull. 2020, 65, 616–622.

    Article  CAS  Google Scholar 

  110. Zhu, M.; Yan, X. X.; Xu, H. L.; Xu, Y. J.; Kong, L. Ultralight, compressible, and anisotropic MXene@wood nanocomposite aerogel with excellent electromagnetic wave shielding and absorbing properties at different directions. Carbon 2021, 182, 806–814.

    Article  CAS  Google Scholar 

  111. Wang, Z. X.; Han, X. S.; Han, X. W.; Chen, Z. B.; Wang, S. J.; Pu, J. W. MXene/wood-derived hierarchical cellulose scaffold composite with superior electromagnetic shielding. Carbohydr. Polym. 2021, 254, 117033.

    Article  CAS  Google Scholar 

  112. Zhou, T. Y.; Xu, C.; Liu, H. P.; Wei, Q. W.; Wang, H.; Zhang, J. G.; Zhao, T.; Liu, Z. B.; Zhang, X. F.; Zeng, Y. et al. Second time-scale synthesis of high-quality graphite films by quenching for effective electromagnetic interference shielding. ACS Nano 2020, 14, 3121–3128.

    Article  CAS  Google Scholar 

  113. Chithra, A.; Wilson, P.; Vijayan, S.; Rajeev, R.; Prabhakaran, K. Carbon foams with low thermal conductivity and high EMI shielding effectiveness from sawdust. Ind. Crops Prod. 2020, 145, 112076.

    Article  CAS  Google Scholar 

  114. Tang, R. B.; Xu, P.; Dong, J. W.; Gui, H. G.; Zhang, T.; Ding, Y. S.; Murugadoss, V.; Naik, N.; Pan, D.; Huang, M. N. et al. Carbon foams derived from emulsion-templated porous polymeric composites for electromagnetic interference shielding. Carbon 2022, 188, 492–502.

    Article  CAS  Google Scholar 

  115. Wei, Q. W.; Pei, S. F.; Qian, X. T.; Liu, H. P.; Liu, Z. B.; Zhang, W. M.; Zhou, T. Y.; Zhang, Z. C.; Zhang, X. F.; Cheng, H. M. et al. Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 2020, 32, 1907411.

    Article  CAS  Google Scholar 

  116. Liu, X. F.; Li, Y.; Sun, X.; Tang, W. K.; Deng, G.; Liu, Y. J.; Song, Z. M.; Yu, Y. H.; Yu, R. H.; Dai, L. M. et al. Off/on switchable smart electromagnetic interference shielding aerogel. Matter 2021, 4, 1735–1747.

    Article  CAS  Google Scholar 

  117. Ying, M. F.; Zhao, R. Z.; Hu, X.; Zhang, Z. H.; Liu, W. W.; Yu, J. Y.; Liu, X. L.; Liu, X. G.; Rong, H. W.; Wu, C. et al. Wrinkled titanium carbide (MXene) with surface charge polarizations through chemical etching for superior electromagnetic interference shielding. Angew. Chem., Int. Ed. 2022, 61, e202201323.

  118. Li, J.; Li, Y. X.; Yang, L. Y.; Yin, S. G. Ti3C2Tx/PANI/liquid metal composite microspheres with 3D nanoflower structure: Preparation, characterization, and applications in EMI shielding. Adv. Mater. Interfaces 2022, 9, 2102266.

    Article  CAS  Google Scholar 

  119. Wu, Y. F.; Huang, K.; Weng, X. D.; Wang, R. Y.; Du, P.; Liu, J. C.; Lin, S.; Huang, K.; Yang, H. J.; Lei, M. PVB coating efficiently improves the high stability of EMI shielding fabric with Cu/Ni. Adv. Compos. Hybrid Mater. 2022, 5, 71–82.

    Article  CAS  Google Scholar 

  120. Zheng, Y.; Song, Y. J.; Gao, T.; Yan, S. Y.; Hu, H. H.; Cao, F.; Duan, Y. P.; Zhang, X. F. Lightweight and hydrophobic three-dimensional wood-derived anisotropic magnetic porous carbon for highly efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2020, 12, 40802–40814.

    Article  CAS  Google Scholar 

  121. Karim, S. S.; Murtaza, Z.; Farrukh, S.; Umer, M. A.; Ali, S. S.; Younas, M.; Mubashir, M.; Saqib, S.; Ayoub, M.; Bokhari, A. et al. Future advances and challenges of nanomaterial-based technologies for electromagnetic interference-based technologies: A review. Environ. Res. 2022, 205, 112402.

    Article  CAS  Google Scholar 

  122. Hwang, U.; Kim, J.; Sun, H. N.; Park, I. K.; Suhr, J.; Nam, J. D. Aperture control in polymer-based composites with hybrid core-shell spheres for frequency-selective electromagnetic interference shielding. J. Mater. Chem. A 2022, 10, 8751–8760.

    Article  CAS  Google Scholar 

  123. Cao, G.; Cai, S. Y.; Zhang, H.; Tian, Y. Q. High-performance conductive adhesives based on water-soluble resins for printed circuits, flexible conductive films, and electromagnetic interference shielding devices. Adv. Compos. Hybrid Mater., in press, https://doi.org/10.1007/s42114-021-00402-1.

  124. Pavlou, C.; Carbone, M. G. P.; Manikas, A. C.; Trakakis, G.; Koral, C.; Papari, G.; Andreone, A.; Galiotis, C. Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat. Commun. 2021, 12, 4655.

    Article  CAS  Google Scholar 

  125. Cheng, Y.; Li, X. Y.; Qin, Y. X.; Fang, Y. T.; Liu, G. L.; Wang, Z. Y.; Matz, J.; Dong, P.; Shen, J. F.; Ye, M. X. Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 2021, 7, eabj1663.

  126. Shen, Z. M.; Feng, J. C. Preparation of thermally conductive polymer composites with good electromagnetic interference shielding efficiency based on natural wood-derived carbon scaffolds. ACS Sustainable Chem. Eng. 2019, 7, 6259–6266.

    Article  CAS  Google Scholar 

  127. Gan, W. T.; Chen, C. J.; Giroux, M.; Zhong, G.; Goyal, M. M.; Wang, Y. L.; **, W. W.; Song, J. W.; Xu, S. M.; He, S. M. et al. Conductive wood for high-performance structural electromagnetic interference shielding. Chem. Mater. 2020, 32, 5280–5289.

    Article  CAS  Google Scholar 

  128. Zhou, M.; Wang, J. W.; Zhao, Y.; Wang, G. H.; Gu, W. H.; Ji, G. B. Hierarchically porous wood-derived carbon scaffold embedded phase change materials for integrated thermal energy management, electromagnetic interference shielding and multifunctional application. Carbon 2021, 183, 515–524.

    Article  CAS  Google Scholar 

  129. Xu, H.; Li, Y.; Han, X. S.; Cai, H. Z.; Gao, F. Carbon black enhanced wood-plastic composites for high-performance electromagnetic interference shielding. Mater. Lett. 2021, 285, 129077.

    Article  CAS  Google Scholar 

  130. Jia, X. C.; Shen, B.; Zhang, L. H.; Zheng, W. G. Construction of shape-memory carbon foam composites for adjustable EMI shielding under self-fixable mechanical deformation. Chem. Eng. J. 2021, 405, 126927.

    Article  CAS  Google Scholar 

  131. Wang, Z. X.; Han, X. S.; Zhou, Z. J.; Meng, W. Y.; Han, X. W.; Wang, S. J.; Pu, J. W. Lightweight and elastic wood-derived composites for pressure sensing and electromagnetic interference shielding. Compos. Sci. Technol. 2021, 213, 108931.

    Article  CAS  Google Scholar 

  132. Liu, S.; Sheng, M. J.; Wu, H.; Shi, X. T.; Lu, X.; Qu, J. P. Biological porous carbon encapsulated polyethylene glycol-based phase change composites for integrated electromagnetic interference shielding and thermal management capabilities. J. Mater. Sci. Technol. 2022, 113, 147–157.

    Article  Google Scholar 

  133. Liu, J.; Zhang, H. B.; Liu, Y. F.; Wang, Q. W.; Liu, Z. S.; Mai, Y. W.; Yu, Z. Z. Magnetic, electrically conductive and lightweight graphene/iron pentacarbonyl porous films enhanced with chitosan for highly efficient broadband electromagnetic interference shielding. Compos. Sci. Technol. 2017, 151, 71–78.

    Article  CAS  Google Scholar 

  134. Zeng, Z. H.; Wang, C. X.; Zhang, Y. F.; Wang, P. Y.; Shahabadi, S. I. S.; Pei, Y. M.; Chen, M. J.; Lu, X. H. Ultralight and highly elastic graphene/lignin-derived carbon nanocomposite aerogels with ultrahigh electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 2018, 10, 8205–8213.

    Article  CAS  Google Scholar 

  135. Pei, X. Y.; Zhao, M. Y.; Li, R. X.; Lu, H.; Yu, R. R.; Xu, Z. W.; Li, D. S.; Tang, Y. H.; **ng, W. J. Porous network carbon nanotubes/chitosan 3D printed composites based on ball milling for electromagnetic shielding. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106363.

    Article  CAS  Google Scholar 

  136. Wei, Y. Y.; Dai, Z. H.; Zhang, Y. F.; Zhang, W. W.; Gu, J.; Hu, C. S.; Lin, X. Y. Multifunctional waterproof MXene-coated wood with high electromagnetic shielding performance. Cellusole, in press., https://doi.org/10.1007/s10570-022-04609-3.

  137. Cheng, Z.; Wei, Y. Y.; Liu, C.; Chen, Y.; Ma, Y.; Chen, H. H.; Liang, X. F.; Sun, N. X.; Zhu, H. L. Lightweight and construable magnetic wood for electromagnetic interference shielding. Adv. Eng. Mater. 2020, 22, 2000257.

    Article  Google Scholar 

  138. Jiang, Y. Q.; Ru, X. L.; Che, W. B.; Jiang, Z. H.; Chen, H. L.; Hou, J. F.; Yu, Y. M. Flexible, mechanically robust and self-extinguishing MXene/wood composite for efficient electromagnetic interference shielding. Compos. Part B Eng. 2022, 229, 109460.

    Article  CAS  Google Scholar 

  139. Wei, Y. Y.; Liang, D. D.; Zhou, H. Y.; Huang, S. J.; Zhang, W. W.; Gu, J.; Hu, C. S.; Lin, X. Y. Facile preparation of MXene-decorated wood with excellent electromagnetic interference shielding performance. Compos. Part A Appl. Sci. Manuf. 2022, 153, 106739.

    Article  CAS  Google Scholar 

  140. Huang, J. X.; Wan, H. J.; Li, M.; Zhang, Y. M.; Zhu, J. F.; Li, X. L.; Shui, W. C.; Li, Y.; Fan, X. M.; Wen, Q. Y. et al. In-situ growth of MAX phase coatings on carbonised wood and their terahertz shielding properties. J. Adv. Ceram. 2021, 10, 1291–1298.

    Article  CAS  Google Scholar 

  141. Zhou, Z. J.; Wang, Z. X.; Han, X. S.; Pu, J. W. CNT@PDMS/NW composite materials with superior electromagnetic shielding. Holzforschung 2022, 76, 299–304.

    Article  CAS  Google Scholar 

  142. Zheng, T.; Sabet, S. M.; Pilla, S. Polydopamine coating improves electromagnetic interference shielding of delignified wood-derived carbon scaffold. J. Mater. Sci. 2021, 56, 10915–10925.

    Article  CAS  Google Scholar 

  143. Gao, T.; Ma, Y.; Ji, L. Z.; Zheng, Y.; Yan, S. Y.; Li, Y. X.; Zhang, X. F. Nickel-coated wood-derived porous carbon (Ni/WPC) for efficient electromagnetic interference shielding. Adv. Compos. Hybrid Mater., in press, https://doi.org/10.1007/s42114-022-00420-7.

  144. Chen, Y. P.; Dang, B. K.; Fu, J. Z.; Wang, C.; Li, C. C.; Sun, Q. F.; Li, H. Q. Cellulose-based hybrid structural material for radiative cooling. Nano Lett. 2021, 21, 397–404.

    Article  CAS  Google Scholar 

  145. Lu, H. C.; **a, Z. H.; Mi, Q. Y.; Zhang, J. M.; Zheng, X. J.; He, Z. Y.; Wu, J.; Zhang, J. Cellulose-based conductive films with superior joule heating performance, electromagnetic shielding efficiency, and high stability by in situ welding to construct a segregated MWCNT conductive network. Ind. Eng. Chem. Res. 2022, 61, 1773–1785.

    Article  CAS  Google Scholar 

  146. Li, Y. H.; Chen, Y. A.; He, X. F.; **ang, Z. Y.; Heinze, T.; Qi, H. S. Lignocellulose nanofibril/gelatin/MXene composite aerogel with fire-warning properties for enhanced electromagnetic interference shielding performance. Chem. Eng. J. 2022, 431, 133907.

    Article  CAS  Google Scholar 

  147. Zhan, Y. H.; Meng, Y. Y.; **e, Q. Simple approach to fabricate MXene/cellulose paper for electromagnetic interference shielding applications. J. Appl. Polym. Sci. 2021, 138, 50597.

    Article  CAS  Google Scholar 

  148. Huang, J. J.; Wang, T.; Su, Y. M.; Ding, Y. L.; Tu, C. Y.; Li, W. M. Hydrophobic MXene/hydroxyethyl cellulose/silicone resin composites with electromagnetic interference shielding. Adv. Mater. Interfaces 2021, 8, 2100186.

    Article  CAS  Google Scholar 

  149. Zhang, F. D.; Ren, P. G.; Guo, H.; Zhang, Z. P.; Guo, Z. Z.; Dai, Z.; Lu, Z. X.; **, Y. L.; Ren, F. Flexible and conductive cellulose composite paper for highly efficient electromagnetic interference shielding. Adv. Electron. Mater. 2021, 7, 2100496.

    Article  CAS  Google Scholar 

  150. Li, M. M.; Zhao, Y. J.; Zhang, M. L.; Jiang, S.; Farooq, A.; Liu, L. Y.; Ge, A. X.; Liu, L. F. Recent progress in the application of cellulose in electromagnetic interference shielding materials. Macromol. Mater. Eng., in press, https://doi.org/10.1002/mame.202100899.

  151. Li, M. M.; Zhang, M. L.; Zhao, Y. J.; Jiang, S.; Xu, Q. Y.; Han, F. Y.; Zhu, Z. H.; Liu, L. F.; Ge, A. X. Multilayer structured CNF/rGO aerogels and rGO film composites for efficient electromagnetic interference shielding. Carbohyd. Polym. 2022, 286, 119306.

    Article  CAS  Google Scholar 

  152. Zhou, Z. H.; Liang, Y.; Huang, H. D.; Li, L.; Yang, B.; Li, M. Z.; Yan, D. X.; Lei, J.; Li, Z. M. Structuring dense three-dimensional sheet-like skeleton networks in biomass-derived carbon aerogels for efficient electromagnetic interference shielding. Carbon 2019, 152, 316–324.

    Article  CAS  Google Scholar 

  153. Qian, K. P.; Zhou, Q. F.; Wu, H. M.; Fang, J. H.; Miao, M.; Yang, Y. H.; Cao, S. M.; Shi, L. Y.; Feng, X. Carbonized cellulose microsphere@void@MXene composite films with egg-box structure for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2021, 141, 106229.

    Article  CAS  Google Scholar 

  154. Zeng, Z. H.; Wang, C. X.; Siqueira, G.; Han, D. X.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F.; Zhang, C. F.; Nyström, G. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 2020, 7, 2000979.

    Article  CAS  Google Scholar 

  155. Wu, N.; Zeng, Z. H.; Kummer, N.; Han, D. X.; Zenobi, R.; Nyström, G. Ultrafine cellulose nanofiber-assisted physical and chemical cross-linking of MXene sheets for electromagnetic interference shielding. Small Methods 2021, 5, 2100889.

    Article  CAS  Google Scholar 

  156. **, K. X.; **ng, J. X.; Liu, X. E.; Jiang, Z. H.; Yang, S. M.; Yang, X.; Ma, J. F. Manipulating the assembly of the CNC/RGO composite film for superior electromagnetic interference shielding properties. J. Mater. Chem. A 2021, 9, 26999–27009.

    Article  CAS  Google Scholar 

  157. Wan, Y. Z.; **ong, P. X.; Liu, J. Z.; Feng, F. F.; Xun, X. W.; Gama, F. M.; Zhang, Q. C.; Yao, F. L.; Yang, Z. W.; Luo, H. L. et al. Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano 2021, 15, 8439–8449.

    Article  CAS  Google Scholar 

  158. Wang, Q. L.; Tang, J.; **ao, S. L.; Wang, M.; Shi, S. Q. Natural fiber-based composites with high hydrophobic, magnetic, and EMI shielding properties via iron oxide in situ synthesis and copper film deposition. BioResources 2020, 15, 8384–8402.

    Article  CAS  Google Scholar 

  159. Zeng, Z. H.; Wang, C. X.; Wu, T. T.; Han, D. X.; Luković, M.; Pan, F.; Siqueira, G.; Nyström, G. Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. J. Mater. Chem. A 2020, 8, 17969–17979.

    Article  CAS  Google Scholar 

  160. Guan, Q. F.; Han, Z. M.; Yang, K. P.; Yang, H. B.; Ling, Z. C.; Yin, C. H.; Yu, S. H. Sustainable double-network structural materials for electromagnetic shielding. Nano Lett. 2021, 21, 2532–2537.

    Article  CAS  Google Scholar 

  161. Zhu, G.; Isaza, L. G.; Huang, B.; Dufresne, A. Multifunctional nanocellulose/carbon nanotube composite aerogels for high-efficiency electromagnetic interference shielding. ACS Sustainable Chem. Eng. 2022, 10, 2397–2408.

    Article  CAS  Google Scholar 

  162. Hu, D. W.; Wang, S. Q.; Zhang, C.; Yi, P. S.; Jiang, P. K.; Huang, X. Y. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021, 14, 2837–2845.

    Article  CAS  Google Scholar 

  163. Cheng, J. Y.; Li, C. B.; **ong, Y. F.; Zhang, H. B.; Raza, H.; Ullah, S.; Wu, J. Y.; Zheng, G. P.; Cao, Q.; Zhang, D. Q. et al. Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 2022, 14, 80.

    Article  CAS  Google Scholar 

  164. Chen, Y. M.; Pang, L.; Li, Y.; Luo, H.; Duan, G. G.; Mei, C. T.; Xu, W. H.; Zhou, W.; Liu, K. M.; Jiang, S. H. Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2020, 135, 105960.

    Article  CAS  Google Scholar 

  165. Liang, C. B.; Ruan, K. P.; Zhang, Y. L.; Gu, J. W. Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances. ACS Appl. Mater. Interfaces 2020, 12, 18023–18031.

    Article  CAS  Google Scholar 

  166. Wang, D. Y.; Liu, R. T.; **e, Y. J.; Li, J.; Wang, L. J. Fabrication of a laminated felt-like electromagnetic shielding material based on nickel-coated cellulose fibers via self-foaming effect in electroless plating process. Int. J. Biol. Macromol. 2020, 154, 954–961.

    Article  CAS  Google Scholar 

  167. Hong, S.; Yoo, S. S.; Lee, J. Y.; Yoo, P. J. Sonochemically activated synthesis of gradationally complexed Ag/TEMPO-oxidized cellulose for multifunctional textiles with high electrical conductivity, super-hydrophobicity, and efficient EMI shielding. J. Mater. Chem. C 2020, 8, 13990–13998.

    Article  CAS  Google Scholar 

  168. Zhu, M.; Yan, X. X.; Lei, Y. T.; Guo, J. H.; Xu, Y. J.; Xu, H. L.; Dai, L.; Kong, L. An ultrastrong and antibacterial silver nanowire/aligned cellulose scaffold composite film for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2022, 14, 14520–14531.

    Article  CAS  Google Scholar 

  169. Zhang, Y.; Yu, J.; Lu, J. Y.; Zhu, C. J.; Qi, D. M. Facile construction of 2D MXene (Ti3C2Tx) based aerogels with effective fire-resistance and electromagnetic interference shielding performance. J. Alloys Compd. 2021, 870, 159442.

    Article  CAS  Google Scholar 

  170. Wang, J.; Zhu, X. B.; **ong, P. X.; Tu, J. P.; Yang, Z. W.; Yao, F. L.; Gama, M.; Zhang, Q. C.; Luo, H. L.; Wan, Y. Z. Flexible, robust and washable bacterial cellulose/silver nanowire conductive paper for high-performance electromagnetic interference shielding. J. Mater. Chem. A 2022, 10, 960–968.

    Article  CAS  Google Scholar 

  171. Parit, M.; Du, H. S.; Zhang, X. Y.; Prather, C.; Adams, M.; Jiang, Z. H. Polypyrrole and cellulose nanofiber based composite films with improved physical and electrical properties for electromagnetic shielding applications. Carbohydr. Polym. 2020, 240, 116304.

    Article  CAS  Google Scholar 

  172. Zhang, Z.; Wang, G. H.; Gu, W. H.; Zhao, Y.; Tang, S. L.; Ji, G. B. A breathable and flexible fiber cloth based on cellulose/polyaniline cellular membrane for microwave shielding and absorbing applications. J. Colloid Interface Sci. 2022, 605, 193–203.

    Article  CAS  Google Scholar 

  173. Wang, Y. N.; Guan, Y. P.; Liao, D. G.; He, Y. Y.; Li, S.; Zhou, L.; Yu, C. B.; Chen, Y. H.; Liu, Y. L.; Liu, H. X. Fabrication of cellulose nanofiber/reduced graphene oxide/nitrile rubber flexible films using pickering emulsion technology for electromagnetic interference shielding and piezoresistive sensor. Macromol. Mater. Eng. 2021, 306, 2100070.

    Article  CAS  Google Scholar 

  174. Zhao, G. J.; Cao, X. Y.; Zhang, Q.; Deng, H.; Fu, Q. A novel interpenetrating segregated functional filler network structure for ultra-high electrical conductivity and efficient EMI shielding in CPCs containing carbon nanotubes. Mater. Today Phys. 2021, 21, 100483.

    Article  CAS  Google Scholar 

  175. Yin, D. W.; Pan, Y. F.; Wang, Y.; Guo, Q.; Hu, S. Q.; Huang, J. T. Preparation and performance of electroless silver composite films based on micro-/nano-cellulose. Wood Sci. Technol. 2022, 56, 649–668.

    Article  CAS  Google Scholar 

  176. Fei, Y.; Liang, M.; Yan, L. W.; Chen, Y.; Zou, H. W. Co/C@cellulose nanofiber aerogel derived from metal-organic frameworks for highly efficient electromagnetic interference shielding. Chem. Eng. J. 2020, 392, 124815.

    Article  CAS  Google Scholar 

  177. Han, G. J.; Ma, Z. G.; Zhou, B.; He, C. G.; Wang, B.; Feng, Y. Z.; Ma, J. M.; Sun, L.; Liu, C. T. Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding. J. Colloid Interface Sci. 2021, 583, 571–578.

    Article  CAS  Google Scholar 

  178. Fei, Y.; Liang, M.; Zhou, T.; Chen, Y.; Zou, H. W. Unique carbon nanofiber@Co/C aerogel derived bacterial cellulose embedded zeolitic imidazolate frameworks for high-performance electromagnetic interference shielding. Carbon 2020, 167, 575–584.

    Article  CAS  Google Scholar 

  179. Chen, Y. A.; Pötschke, P.; Pionteck, J.; Voit, B.; Qi, H. S. Multifunctional cellulose/rGO/Fe3O4 composite aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2020, 12, 22088–22098.

    Article  CAS  Google Scholar 

  180. Qian, Y. X.; Tao, Y.; Li, W.; Li, Y.; Xu, T.; Hao, J. N.; Jiang, Q. H.; Luo, Y. B.; Yang, J. Y. High electromagnetic wave absorption and thermal management performance in 3D CNF@C−Ni/epoxy resin composites. Chem. Eng. J. 2021, 425, 131608.

    Article  CAS  Google Scholar 

  181. Li, Y.; Xue, B.; Yang, S. D.; Cheng, Z. L.; **e, L.; Zheng, Q. Flexible multilayered films consisting of alternating nanofibrillated cellulose/Fe3O4 and carbon nanotube/polyethylene oxide layers for electromagnetic interference shielding. Chem. Eng. J. 2021, 410, 128356.

    Article  CAS  Google Scholar 

  182. Cao, W. T.; Ma, C.; Tan, S.; Ma, M. G.; Wan, P. B.; Chen, F. Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Lett. 2019, 11, 72.

    Article  CAS  Google Scholar 

  183. Shang, Y.; Ji, Y. X.; Dong, J. W.; Yang, G.; Zhang, X. D.; Su, F. M.; Feng, Y. Z.; Liu, C. T. Sandwiched cellulose nanofiber/boron nitride nanosheet/Ti3C2Tx MXene composite film with high electromagnetic shielding and thermal conductivity yet insulation performance. Compos. Sci. Technol. 2021, 214, 108974.

    Article  CAS  Google Scholar 

  184. Chen, Y. M.; Luo, H.; Guo, H. T.; Liu, K. M.; Mei, C. T.; Li, Y.; Duan, G. G.; He, S. J.; Han, J. Q.; Zheng, J. J. et al. Anisotropic cellulose nanofibril composite sponges for electromagnetic interference shielding with low reflection loss. Carbohydr. Polym. 2022, 276, 118799.

    Article  CAS  Google Scholar 

  185. Zhou, B.; Li, Q. T.; Xu, P. H.; Feng, Y. Z.; Ma, J. M.; Liu, C. T.; Shen, C. Y. An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management. Nanoscale 2021, 13, 2378–2388.

    Article  CAS  Google Scholar 

  186. Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

    Article  CAS  Google Scholar 

  187. Liu, K.; Liu, W.; Li, W.; Duan, Y. X.; Zhou, K. Y.; Zhang, S.; Ni, S. Z.; Xu, T.; Du, H. S.; Si, C. L. Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv. Compos. Hybrid Mater., in press, https://doi.org/10.1007/s42114-022-00425-2.

  188. Liao, S. Y.; Wang, X. Y.; Li, X. M.; Wan, Y. J.; Zhao, T.; Hu, Y. G.; Zhu, P. L.; Sun, R.; Wong, C. P. Flexible liquid metal/cellulose nanofiber composites film with excellent thermal reliability for highly efficient and broadband EMI shielding. Chem. Eng. J. 2021, 422, 129962.

    Article  CAS  Google Scholar 

  189. Zeng, Z. H.; Wu, T. T.; Han, D. X.; Ren, Q.; Siqueira, G.; Nyström, G. Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 2020, 14, 2927–2938.

    Article  CAS  Google Scholar 

  190. Wang, L.; Song, P.; Lin, C. T.; Kong, J.; Gu, J. W. 3D shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research 2020, 2020, 4093732.

    Article  CAS  Google Scholar 

  191. Liu, R. T.; Li, T. T.; Xu, J.; Zhang, T. C.; **e, Y. J.; Li, J.; Wang, L. J. Sandwich-structural Ni/Fe3O4/Ni/cellulose paper with a honeycomb surface for improved absorption performance of electromagnetic interference. Carbohydr. Polym. 2021, 260, 117840.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22078184), China Postdoctoral Science Foundation (No. 2019M653853XB), and Natural science advance research foundation of Shaanxi University of Science and Technology (No. 2018QNBJ-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanyin **ong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ong, C., Wang, T., Zhang, Y. et al. Recent progress on green electromagnetic shielding materials based on macro wood and micro cellulose components from natural agricultural and forestry resources. Nano Res. 15, 7506–7532 (2022). https://doi.org/10.1007/s12274-022-4512-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4512-2

Keywords

Navigation