Log in

Amnion Epithelial Cells — a Therapeutic Source

  • Prenatal Therapies (W Peranteau, Section Editor)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this review, we will explore the clinical and commercial focus on amniotic membranes (AMs) and their use in tissue engineering (TE). We will showcase the therapeutic potential of AM-isolated epithelial cells (hAECs) and the prospective use of their secreted factors, extracellular vesicles (EVs), in cell and non-cell therapies.

Recent Findings

The potential of the hAECs as a therapeutic source has been investigated in various preclinical models with some progressing into phase I clinical trials to evaluate their safety. Additionally, multiple animal studies showcase the therapeutic potential of EVs as non-cellular treatments.

Summary

The amniotic membrane (AM) has been used as a form of regenerative medicine in wound healing for burns and ulcerated surfaces and in ophthalmology for over a century. In the last few decades, research has looked to the use of the various stem cells that can be isolated from the AM. The use of AM-isolated hAECs has proven rather promising with phase I clinical trials currently underway across life-threatening diseases in both pediatric and adult populations. However, due to limitations of using cell-based therapies (e.g., cost of production, delivery restricted to major hospitals, etc.), attention has turned to investigating EVs secreted by the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Young SM, Benyshek DC. In search of human placentophagy: a cross-cultural survey of human placenta consumption, disposal practices, and cultural beliefs. Ecol Food Nutr. 2010;49(6):467–84.

    Article  PubMed  Google Scholar 

  2. Davis J. Skin transplantation with a review of 550 cases at the Johns Hopkins Hospital. Johns Hopkins Med J. 1910;15.

  3. Stern M. The grafting of preserved amniotic membrane to burned and ulcerated surfaces, substituting skin grafts. J Am Med Assoc. 1913;60(13):973–4.

    Article  Google Scholar 

  4. Sabella N. Use of fetal membranes in skin grafting. Med Rec. 1913;83:478–80.

    Google Scholar 

  5. Silini AR, et al. The long path of human placenta, and its derivatives, in regenerative medicine. Front Bioeng Biotechnol. 2015;3:162.

    Article  PubMed  PubMed Central  Google Scholar 

  6. De Rotth A. Plastic repair of conjunctival defects with fetal membranes. Arch Ophthalmol. 1940;23:522–5.

    Article  Google Scholar 

  7. Sorsby A, Symons HM. Amniotic membrane grafts in caustic burns of the eye (burns of the second degree). Br J Ophthalmol. 1946;30:337–45.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sorsby A, Haythorne J, Reed H. Further experience with amniotic membrane grafts in caustic burns of the eye. Br J Ophthalmol. 1947;31(7):409–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trelford-Sauder M, Trelford JD, Matolo NM. Replacement of the peritoneum with amnion following pelvic exenteration. Surg Gynecol Obstet. 1977;145(5):699–701.

    CAS  PubMed  Google Scholar 

  10. Trelford-Sauder M, Dawe EJ, Trelford JD. Use of allograft amniotic membrane for control of intra-abdominal adhesions. J Med. 1978;9(4):273–84.

    CAS  PubMed  Google Scholar 

  11. Silverton JS, Trelford JD, Roussere JT, Wolfe BM, Conti S. The use of amniotic membrane in acute massive full-thickness loss of the abdominal wall from clostridial myonecrosis. Ann Plast Surg. 1979;3(6):558–66.

    Article  CAS  PubMed  Google Scholar 

  12. Dhall K. Amnion graft for treatment of congenital absence of the vagina. Br J Obstet Gynaecol. 1984;91(3):279–82.

    Article  CAS  PubMed  Google Scholar 

  13. Nisolle M, Donnez J. Vaginoplasty using amniotic membranes in cases of vaginal agenesis or after vaginectomy. J Gynecol Surg. 1992;8(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  14. Georgy M, Aziz N. Vaginoplasty using amnion graft: new surgical technique using the laparoscopic transillumination light. J Obstet Gynaecol. 1996;16:262–4.

    Article  Google Scholar 

  15. Gharib M, Ure BM, Klose M. Use of amniotic grafts in the repair of gastroschisis. Pediatr Surg Int. 1996;11(2-3):96–9.

    Article  CAS  PubMed  Google Scholar 

  16. Kubanyi A. Prevention of peritoneal adhesions by transplantation of amnion. Br Med J. 1947;2(4514):55–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Muralidharan S, Gu J, Laub GW, Cichon R, Daloisio C, McGrath LB. A new biological membrane for pericardial closure. J Biomed Mater Res. 1991;25(10):1201–9.

    Article  CAS  PubMed  Google Scholar 

  18. Chao YC, Humphreys S, Penfield W. A new method of preventing adhesions. The use of amnioplastin after craniotomy. Br Med J. 1940;1(4134):517–538.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Troensegaard-Hansen E. Amniotic grafts in chronic skin ulceration. Lancet. 1950;1(6610):859–60.

    Article  CAS  PubMed  Google Scholar 

  20. Bennett JP, Matthews R, Faulk WP. Treatment of chronic ulceration of the legs with human amnion. Lancet. 1980;1(8179):1153–6.

    Article  CAS  PubMed  Google Scholar 

  21. Subrahmanyam M. Amniotic membrane as a cover for microskin grafts. Br J Plast Surg. 1995;48(7):477–8.

    Article  CAS  PubMed  Google Scholar 

  22. Gruss JS, Jirsch DW. Human amniotic membrane: a versatile wound dressing. Can Med Assoc J. 1978;118(10):1237–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bose B. Burn wound dressing with human amniotic membrane. Ann R Coll Surg Engl. 1979;61(6):444–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Dua HS, Gomes JAP, King AJ, Maharajan VS. The amniotic membrane in ophthalmology. Surv Ophthalmol. 2004;49(1):51–77.

    Article  PubMed  Google Scholar 

  25. Fetterolf DE, Snyder RJ. Scientific and clinical support for the use of dehydrated amniotic membrane in wound management. Wounds. 2012;24(10):299–307.

    PubMed  Google Scholar 

  26. Morandi F, et al. Human amnion epithelial cells impair T cell proliferation: the role of HLA-G and HLA-E molecules. Cells. 2020;9(9):2123.

    Article  CAS  PubMed Central  Google Scholar 

  27. Glat P, Orgill DP, Galiano R, Armstrong D, Serena T, DiDomenico LA, et al. Placental membrane provides improved healing efficacy and lower cost versus a tissue-engineered human skin in the treatment of diabetic foot ulcerations. Plast Reconstr Surg Glob Open. 2019;7(8):e2371.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Snyder RJ, et al. A prospective, randomized, multicenter, controlled evaluation of the use of dehydrated amniotic membrane allograft compared to standard of care for the closure of chronic diabetic foot ulcer. Wounds. 2016;28(3):70–7.

    PubMed  Google Scholar 

  29. Doucette M, et al. Early advanced therapy for diabetic foot ulcers in high amputation risk veterans: a cohort study. Int J Low Extrem Wounds. 2020;22:1534734620928151.

    Google Scholar 

  30. Zelen CM, Serena TE, Snyder RJ. A prospective, randomised comparative study of weekly versus biweekly application of dehydrated human amnion/chorion membrane allograft in the management of diabetic foot ulcers. Int Wound J. 2014;11(2):122–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Serena TE, Carter MJ, le LT, Sabo MJ, DiMarco DT, EpiFix VLU Study Group. A multicenter, randomized, controlled clinical trial evaluating the use of dehydrated human amnion/chorion membrane allografts and multilayer compression therapy vs. multilayer compression therapy alone in the treatment of venous leg ulcers. Wound Repair Regen. 2014;22(6):688–93.

    Article  PubMed  Google Scholar 

  32. Tettelbach W, Cazzell S, Reyzelman AM, Sigal F, Caporusso JM, Agnew PS. A confirmatory study on the efficacy of dehydrated human amnion/chorion membrane dHACM allograft in the management of diabetic foot ulcers: a prospective, multicentre, randomised, controlled study of 110 patients from 14 wound clinics. Int Wound J. 2019;16(1):19–29.

    Article  PubMed  Google Scholar 

  33. Zelen CM, Serena TE, Denoziere G, Fetterolf DE. A prospective randomised comparative parallel study of amniotic membrane wound graft in the management of diabetic foot ulcers. Int Wound J. 2013;10(5):502–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zelen CM. An evaluation of dehydrated human amniotic membrane allografts in patients with DFUs. J Wound Care. 2013;22(7):347–8 350-1.

    Article  CAS  PubMed  Google Scholar 

  35. Bianchi C, Cazzell S, Vayser D, Reyzelman AM, Dosluoglu H, Tovmassian G, et al. A multicentre randomised controlled trial evaluating the efficacy of dehydrated human amnion/chorion membrane (EpiFix((R))) allograft for the treatment of venous leg ulcers. Int Wound J. 2018;15(1):114–22.

    Article  PubMed  Google Scholar 

  36. Zelen CM, Gould L, Serena TE, Carter MJ, Keller J, Li WW. A prospective, randomised, controlled, multi-centre comparative effectiveness study of healing using dehydrated human amnion/chorion membrane allograft, bioengineered skin substitute or standard of care for treatment of chronic lower extremity diabetic ulcers. Int Wound J. 2015;12(6):724–32.

    Article  PubMed  Google Scholar 

  37. Lavery L, Fulmer J, Shebetka KA, Regulski M, Vayser D, Fried D, et al. Open-label extension phase of a chronic diabetic foot ulcer multicenter, controlled, randomized clinical trial using cryopreserved placental membrane. Wounds. 2018;30(9):283–9.

    PubMed  Google Scholar 

  38. Ananian CE, Dhillon YS, van Gils CC, Lindsey DC, Otto RJ, Dove CR, et al. A multicenter, randomized, single-blind trial comparing the efficacy of viable cryopreserved placental membrane to human fibroblast-derived dermal substitute for the treatment of chronic diabetic foot ulcers. Wound Repair Regen. 2018;26(3):274–83.

    Article  PubMed  Google Scholar 

  39. Mligiliche N, Endo K, Okamoto K, Fujimoto E, Ide C. Extracellular matrix of human amnion manufactured into tubes as conduits for peripheral nerve regeneration. J Biomed Mater Res. 2002;63(5):591–600.

    Article  CAS  PubMed  Google Scholar 

  40. Mohammad J, Shenaq J, Rabinovsky E, Shenaq S. Modulation of peripheral nerve regeneration: a tissue-engineering approach. The role of amnion tube nerve conduit across a 1-centimeter nerve gap. Plast Reconstr Surg. 2000;105(2):660–6.

    Article  CAS  PubMed  Google Scholar 

  41. Miyamoto K, Hayashi K, Suzuki T, Ichihara S, Yamada T, Kano Y, et al. Human placenta feeder layers support undifferentiated growth of primate embryonic stem cells. Stem Cells. 2004;22(4):433–40.

    Article  PubMed  Google Scholar 

  42. Ueno M, Matsumura M, Watanabe K, Nakamura T, Osakada F, Takahashi M, et al. Neural conversion of ES cells by an inductive activity on human amniotic membrane matrix. Proc Natl Acad Sci U S A. 2006;103(25):9554–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. ** CZ, Park SR, Choi BH, Lee KY, Kang CK, Min BH. Human amniotic membrane as a delivery matrix for articular cartilage repair. Tissue Eng. 2007;13(4):693–702.

    Article  CAS  PubMed  Google Scholar 

  44. Portmann-Lanz CB, Ochsenbein-Kölble N, Marquardt K, Lüthi U, Zisch A, Zimmermann R. Manufacture of a cell-free amnion matrix scaffold that supports amnion cell outgrowth in vitro. Placenta. 2007;28(1):6–13.

    Article  CAS  PubMed  Google Scholar 

  45. Yang L, Shirakata Y, Shudou M, Dai X, Tokumaru S, Hirakawa S, et al. New skin-equivalent model from de-epithelialized amnion membrane. Cell Tissue Res. 2006;326(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  46. Ishino Y, Sano Y, Nakamura T, Connon CJ, Rigby H, Fullwood NJ, et al. Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest Ophthalmol Vis Sci. 2004;45(3):800–6.

    Article  PubMed  Google Scholar 

  47. Farhadihosseinabadi B, et al. Amniotic membrane and its epithelial and mesenchymal stem cells as an appropriate source for skin tissue engineering and regenerative medicine. Artif Cells Nanomed Biotechnol. 2018;46(sup2):431–40.

    Article  CAS  PubMed  Google Scholar 

  48. Tsai SH, Liu YW, Tang WC, Zhou ZW, Hwang CY, Hwang GY, et al. Characterization of porcine arterial endothelial cells cultured on amniotic membrane, a potential matrix for vascular tissue engineering. Biochem Biophys Res Commun. 2007;357(4):984–90.

    Article  CAS  PubMed  Google Scholar 

  49. Xu H, et al. Therapeutic potential of human amniotic epithelial cells on injuries and disorders in the central nervous system. Stem Cells Int. 2019;2019:5432301.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Magatti M, Vertua E, Cargnoni A, Silini A, Parolini O. The immunomodulatory properties of amniotic cells: the two sides of the coin. Cell Transplant. 2018;27(1):31–44.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Krause M, Lozano J, Lim R. The regenerative and reparative potential of amniotic membrane stem cells: biology, manufacturing and translational medicine. In: Perital Stem Cells; 2019. p. 9–26.

    Google Scholar 

  52. Fatimah SS, Tan GC, Chua KH, Tan AE, Hayati AR. Effects of epidermal growth factor on the proliferation and cell cycle regulation of cultured human amnion epithelial cells. J Biosci Bioeng. 2012;114(2):220–7.

    Article  CAS  PubMed  Google Scholar 

  53. Insausti CL, Blanquer M, García-Hernández AM, Castellanos G, Moraleda JM. Amniotic membrane-derived stem cells: immunomodulatory properties and potential clinical application. Stem Cells Cloning. 2014;7:53–63.

    PubMed  PubMed Central  Google Scholar 

  54. McDonald CA, Payne NL, Sun G, Moussa L, Siatskas C, Lim R, et al. Immunosuppressive potential of human amnion epithelial cells in the treatment of experimental autoimmune encephalomyelitis. J Neuroinflammation. 2015;12(1):112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lim R. Concise review: fetal membranes in regenerative medicine: new tricks from an old dog? Stem Cells Transl Med. 2017;6(9):1767–76.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tan JL, Chan ST, Wallace EM, Lim R. Human amnion epithelial cells mediate lung repair by directly modulating macrophage recruitment and polarization. Cell Transplant. 2014;23(3):319–28.

    Article  PubMed  Google Scholar 

  57. Vosdoganes P, et al. Human amnion epithelial cells as a treatment for inflammation-induced fetal lung injury in sheep.(Report). Am J Obstet Gynecol. 2011;205(2):156.e26–33.

    Article  Google Scholar 

  58. • Lim R, et al. First-in-human administration of allogeneic amnion cells in premature infants with bronchopulmonary dysplasia: a safety study. Stem Cells Transl Med. 2018;7(9):628–35 Demonstrates the safety of hAECS with no adverse effects in this first-in-human clinical trial of hAECs in babies with BPD.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhu D, Tan J, Maleken AS, Muljadi R, Chan ST, Lau SN, et al. Human amnion cells reverse acute and chronic pulmonary damage in experimental neonatal lung injury. Stem Cell Res Ther. 2017;8(1):257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. • Hodge A, et al. Soluble factors derived from human amniotic epithelial cells suppress collagen production in human hepatic stellate cells. Cytotherapy. 2014;16(8):1132–44 Provides evidence that factors secreted by hAECs have anti-fibrotic effects in liver fibrosis in vivo, significantly decreasing the expression of pro-fibrotic cytokine TGF-β1 and reducing HSC collagen production.

    Article  CAS  PubMed  Google Scholar 

  61. Kuk N, Hodge A, Sun Y, Correia J, Alhomrani M, Samuel C, et al. Human amnion epithelial cells and their soluble factors reduce liver fibrosis in murine non-alcoholic steatohepatitis. J Gastroenterol Hepatol. 2019;34(8):1441–9.

    CAS  PubMed  Google Scholar 

  62. Manuelpillai U, Lourensz D, Vaghjiani V, Tchongue J, Lacey D, Tee JY, et al. Human amniotic epithelial cell transplantation induces markers of alternative macrophage activation and reduces established hepatic fibrosis. PLoS One. 2012;7(6):e38631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kakishita K, Nakao N, Sakuragawa N, Itakura T. Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res. 2003;980:48–56.

    Article  CAS  PubMed  Google Scholar 

  64. Roh D-H, Seo MS, Choi HS, Park SB, Han HJ, Beitz AJ, et al. Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats. Cell Transplant. 2013;22(9):1577–90.

    Article  PubMed  Google Scholar 

  65. Dong W, Chen H, Yang X, Guo L, Hui G. Treatment of intracerebral haemorrhage in rats with intraventricular transplantation of human amniotic epithelial cells. Cell Biol Int. 2010;34(6):573–7.

    Article  PubMed  Google Scholar 

  66. Roy R, et al. Epithelial-to-mesenchymal transition enhances the cardioprotective capacity of human amniotic epithelial cells. Cell Transplant. 2013;24(6):985–1002.

    Article  PubMed  Google Scholar 

  67. Fournel S, Aguerre-Girr M, Huc X, Lenfant F, Alam A, Toubert A, et al. Cutting edge: soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J Immunol. 2000;164(12):6100–4.

    Article  CAS  PubMed  Google Scholar 

  68. Marchal-Bras-Goncalves R, Rouas-Freiss N, Connan F, Choppin J, Dausset J, Carosella ED, et al. A soluble HLA-G protein that inhibits natural killer cell-mediated cytotoxicity. Transplant Proc. 2001;33(3):2355–9.

    Article  CAS  PubMed  Google Scholar 

  69. Kapasi K, Albert SE, Yie SM, Zavazava N, Librach CL. HLA-G has a concentration-dependent effect on the generation of an allo-CTL response. Immunology. 2000;101(2):191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Riteau B, Rouas-Freiss N, Menier C, Paul P, Dausset J, Carosella ED. HLA-G2, -G3, and -G4 isoforms expressed as nonmature cell surface glycoproteins inhibit NK and antigen-specific CTL cytolysis. J Immunol. 2001;166(8):5018–26.

    Article  CAS  PubMed  Google Scholar 

  71. Riteau B, Menier C, Khalil-Daher I, Sedlik C, Dausset J, Rouas-Freiss N, et al. HLA-G inhibits the allogeneic proliferative response. J Reprod Immunol. 1999;43(2):203–11.

    Article  CAS  PubMed  Google Scholar 

  72. Bainbridge DR, Ellis SA, Sargent IL. HLA-G suppresses proliferation of CD4(+) T-lymphocytes. J Reprod Immunol. 2000;48(1):17–26.

    Article  CAS  PubMed  Google Scholar 

  73. Kanai T, Fujii T, Kozuma S, Yamashita T, Miki A, Kikuchi A, et al. Soluble HLA-G influences the release of cytokines from allogeneic peripheral blood mononuclear cells in culture. Mol Hum Reprod. 2001;7(2):195–200.

    Article  CAS  PubMed  Google Scholar 

  74. Kanai T, et al. Human leukocyte antigen-G-expressing cells differently modulate the release of cytokines from mononuclear cells present in the decidua versus peripheral blood. Am J Reprod Immunol. 2001;45(2):94–9.

    Article  CAS  PubMed  Google Scholar 

  75. Li H, Niederkorn JY, Neelam S, Mayhew E, Word RA, McCulley JP, et al. Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci. 2005;46(3):900–7.

    Article  PubMed  Google Scholar 

  76. Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem cell characteristics of amniotic epithelial cells. Stem Cells. 2005;23(10):1549–59.

    Article  CAS  PubMed  Google Scholar 

  77. Parolini O, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells. 2008;26(2):300–11.

    Article  PubMed  Google Scholar 

  78. Miki T, Strom SC. Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev. 2006;2(2):133–42.

    Article  CAS  PubMed  Google Scholar 

  79. Atala A. Perinatal stem cells: research and therapy. Cambridge: Academic Press; 2018.

    Google Scholar 

  80. Moodley Y, Ilancheran S, Samuel C, Vaghjiani V, Atienza D, Williams ED, et al. Human amnion epithelial cell transplantation abrogates lung fibrosis and augments repair. Am J Respir Crit Care Med. 2010;182(5):643–51.

    Article  CAS  PubMed  Google Scholar 

  81. Murphy S, Lim R, Dickinson H, Acharya R, Rosli S, Jenkin G, et al. Human amnion epithelial cells prevent bleomycin-induced lung injury and preserve lung function. Cell Transplant. 2011;20(6):909–24.

    Article  PubMed  Google Scholar 

  82. Murphy SV, Shiyun SC, Tan JL, Chan S, Jenkin G, Wallace EM, et al. Human amnion epithelial cells do not abrogate pulmonary fibrosis in mice with impaired macrophage function. Cell Transplant. 2012;21(7):1477–92.

    Article  PubMed  Google Scholar 

  83. Vosdoganes P, Wallace EM, Chan ST, Acharya R, Moss TJM, Lim R. Human amnion epithelial cells repair established lung injury. Cell Transplant. 2013;22(8):1337–49.

    Article  PubMed  Google Scholar 

  84. Tan JL, et al. Amnion cell-mediated immune modulation following bleomycin challenge: controlling the regulatory T cell response. Stem Cell Res Ther. 2015;6(1):1–12.

    Article  CAS  Google Scholar 

  85. Royce SG, Patel KP, Mao W, Zhu D, Lim R, Samuel CS. Serelaxin enhances the therapeutic effects of human amnion epithelial cell-derived exosomes in experimental models of lung disease. Br J Pharmacol. 2019;176(13):2195–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Geng L, Chen Z, Ren H, Niu X, Yu X, Yan H. Effects of an early intervention using human amniotic epithelial cells in a COPD rat model. Pathol-Res Prac. 2016;212(11):1027–33.

    Article  CAS  Google Scholar 

  87. Vosdoganes P, et al. Human amnion epithelial cells as a treatment for inflammation-induced fetal lung injury in sheep. Am J Obstet Gynecol. 2011;205(2):156.e26–33.

    Article  Google Scholar 

  88. Hodges RJ, et al. Human amnion epithelial cells reduce ventilation-induced preterm lung injury in fetal sheep. Am J Obstet Gynecol. 2012;206(5):448.e8–448.e15.

    Article  Google Scholar 

  89. Vosdoganes P, Lim R, Koulaeva E, Chan ST, Acharya R, Moss TJM, et al. Human amnion epithelial cells modulate hyperoxia-induced neonatal lung injury in mice. Cytotherapy. 2013;15(8):1021–9.

    Article  CAS  PubMed  Google Scholar 

  90. Zhu D, Tan J, Maleken AS, Muljadi R, Chan ST, Lau SN, et al. Human amnion cells reverse acute and chronic pulmonary damage in experimental neonatal lung injury. Stem Cell Res Ther. 2017;8(1):257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Fang C-H, ** J, Joe JH, Song YS, So BI, Lim SM, et al. In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: comparison with cord blood and adipose tissue-derived mesenchymal stem cells. Cell Transplant. 2012;21(8):1687–96.

    Article  PubMed  Google Scholar 

  92. Song Y-S, Joo HW, Park IH, Shen GY, Lee Y, Shin JH, et al. Transplanted human amniotic epithelial cells secrete paracrine proangiogenic cytokines in rat model of myocardial infarctio. Cell Transplant. 2015;24(10):2055–64.

    Article  PubMed  Google Scholar 

  93. Yawno T, Schuilwerve J, Moss TJM, Vosdoganes P, Westover AJ, Afandi E, et al. Human amnion epithelial cells reduce fetal brain injury in response to intrauterine inflammation. Dev Neurosci. 2013;35(2-3):272–82.

    Article  CAS  PubMed  Google Scholar 

  94. Yawno T, Sabaretnam T, Li J, Mcdonald C, Lim R, Jenkin G, et al. Human amnion epithelial cells protect against white matter brain injury after repeated endotoxin exposure in the preterm ovine fetus. Cell Transplant. 2017;26(4):541–53.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Barton SK, Melville JM, Tolcos M, Polglase GR, McDougall ARA, Azhan A, et al. Human amnion epithelial cells modulate ventilation-induced white matter pathology in preterm lambs. Dev Neurosci. 2015;37(4-5):338–48.

    Article  CAS  PubMed  Google Scholar 

  96. Leaw B, et al. Human amnion epithelial cells rescue cell death via immunomodulation of microglia in a mouse model of perinatal brain injury. Stem Cell Res Ther. 2017;8(1):1–17.

    Article  CAS  Google Scholar 

  97. van den Heuij LG, Fraser M, Miller SL, Jenkin G, Wallace EM, Davidson JO, et al. Delayed intranasal infusion of human amnion epithelial cells improves white matter maturation after asphyxia in preterm fetal sheep. J Cereb Blood Flow Metab. 2019;39(2):223–39.

    Article  PubMed  Google Scholar 

  98. Evans MA, Lim R, Kim HA, Chu HX, Gardiner-Mann CV, Taylor KWE, et al. Acute or delayed systemic administration of human amnion epithelial cells improves outcomes in experimental stroke. Stroke. 2018;49(3):700–9.

    Article  PubMed  Google Scholar 

  99. Liu T, Wu J, Huang Q, Hou Y, Jiang Z, Zang S, et al. Human amniotic epithelial cells ameliorate behavioral dysfunction and reduce infarct size in the rat middle cerebral artery occlusion model. Shock. 2008;29(5):603–11.

    Article  PubMed  CAS  Google Scholar 

  100. Zhou H, et al. HAEC in the treatment of brain hemorrhage: a preliminary observation in rabbits. Int J Clin Exp Pathol. 2015;8(6):6772.

    PubMed  PubMed Central  Google Scholar 

  101. Liang H, Guan D, Gao A, Yin Y, **g M, Yang L, et al. Human amniotic epithelial stem cells inhibit microglia activation through downregulation of tumor necrosis factor-α, interleukin-1β and matrix metalloproteinase-12 in vitro and in a rat model of intracerebral hemorrhage. Cytotherapy. 2014;16(4):523–34.

    Article  CAS  PubMed  Google Scholar 

  102. Kim HA, et al. Systemic treatment with human amnion epithelial cells after experimental traumatic brain injury. Brain Behav Immun Health. 2020;5:100072.

    Article  Google Scholar 

  103. Wu Z-Y, et al. Transplantation of human amniotic epithelial cells improves hindlimb function in rats with spinal cord injury. Chin Med J. 2006;119(24):2101–7.

    Article  PubMed  Google Scholar 

  104. Meng XT, et al. Co-transplantation of bFGF-expressing amniotic epithelial cells and neural stem cells promotes functional recovery in spinal cord-injured rats. Cell Biol Int. 2008;32(12):1546–58.

    Article  CAS  PubMed  Google Scholar 

  105. Xue H, et al. Development of a chemically extracted acellular muscle scaffold seeded with amniotic epithelial cells to promote spinal cord repair. J Biomed Mater Res A. 2013;101(1):145–56.

    Article  PubMed  CAS  Google Scholar 

  106. Wang T-G, et al. Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury. Neural Regen Res. 2016;11(10):1670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sankar V, Muthusamy R. Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience. 2003;118(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  108. Kim KY, Suh Y-H, Chang K-A. Therapeutic effects of human amniotic epithelial stem cells in a transgenic mouse model of Alzheimer’s disease. Int J Mol Sci. 2020;21(7):2658.

    Article  CAS  PubMed Central  Google Scholar 

  109. Yang X, Song L, Wu N, Liu Z, Xue S, Hui G. An experimental study on intracerebroventricular transplantation of human amniotic epithelial cells in a rat model of Parkinson’s disease. Neurol Res. 2010;32(10):1054–9.

    Article  PubMed  Google Scholar 

  110. Kakishita K, Nakao N, Sakuragawa N, Itakura T. Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res. 2003;980(1):48–56.

    Article  CAS  PubMed  Google Scholar 

  111. Kuk N, Hodge A, Sun Y, Correia J, Alhomrani M, Samuel C, et al. Human amnion epithelial cells and their soluble factors reduce liver fibrosis in murine non-alcoholic steatohepatitis. J Gastroenterol Hepatol. 2019;34(8):1441–9.

    CAS  PubMed  Google Scholar 

  112. Manuelpillai U, Tchongue J, Lourensz D, Vaghjiani V, Samuel CS, Liu A, et al. Transplantation of human amnion epithelial cells reduces hepatic fibrosis in immunocompetent CCl4-treated mice. Cell Transplant. 2010;19(9):1157–68.

    Article  PubMed  Google Scholar 

  113. Hong S-B, Seo MS, Park SB, Seo YJ, Kim JS, Kang KS. Therapeutic effects of human amniotic epithelial stem cells in Niemann–Pick type C1 mice. Cytotherapy. 2012;14(5):630–8.

    Article  CAS  PubMed  Google Scholar 

  114. Skvorak KJ, Dorko K, Marongiu F, Tahan V, Hansel MC, Gramignoli R, et al. Placental stem cell correction of murine intermediate maple syrup urine disease. Hepatology. 2013;57(3):1017–23.

    Article  CAS  PubMed  Google Scholar 

  115. Skvorak KJ, Dorko K, Marongiu F, Tahan V, Hansel MC, Gramignoli R, et al. Improved amino acid, bioenergetic metabolite and neurotransmitter profiles following human amnion epithelial cell transplant in intermediate maple syrup urine disease mice. Mol Genet Metab. 2013;109(2):132–8.

    Article  CAS  PubMed  Google Scholar 

  116. Liu YH, Vaghjiani V, Tee JY, To K, Cui P, Oh DY, et al. Amniotic epithelial cells from the human placenta potently suppress a mouse model of multiple sclerosis. PLoS One. 2012;7(4):e35758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tan B, Yuan W, Li J, Yang P, Ge Z, Liu J, et al. Therapeutic effect of human amniotic epithelial cells in murine models of Hashimoto’s thyroiditis and systemic lupus erythematosus. Cytotherapy. 2018;20(10):1247–58.

    Article  CAS  PubMed  Google Scholar 

  118. Zhang Q, Huang Y, Sun J, Gu T, Shao X, Lai D. Immunomodulatory effect of human amniotic epithelial cells on restoration of ovarian function in mice with autoimmune ovarian disease. Acta Biochim Biophys Sin. 2019;51(8):845–55.

    Article  CAS  PubMed  Google Scholar 

  119. Lim R, Malhotra A, Tan J, Chan ST, Lau S, Zhu D, et al. First-in-human administration of allogeneic amnion cells in premature infants with bronchopulmonary dysplasia: a safety study. Stem Cells Transl Med. 2018;7(9):628–35.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Baker EK, Malhotra A, Lim R, Jacobs SE, Hooper SB, Davis PG, et al. Human amnion cells for the prevention of bronchopulmonary dysplasia: a protocol for a phase I dose escalation study. BMJ Open. 2019;9(2):e026265.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Lim R, Hodge A, Moore G, Wallace EM, Sievert W. A pilot study evaluating the safety of intravenously administered human amnion epithelial cells for the treatment of hepatic fibrosis. Front Pharmacol. 2017;8:549.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Phan TG, Ma H, Lim R, Sobey CG, Wallace EM. Phase 1 trial of amnion cell therapy for ischemic stroke. Front Neurol. 2018;9:198.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Akle CA, Adinolfi M, Welsh KI, Leibowitz S, McColl I. Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet. 1981;2(8254):1003–5.

    Article  CAS  PubMed  Google Scholar 

  124. Adinolfi M, Akle CA, McColl I, Fensom AH, Tansley L, Connolly P, et al. Expression of HLA antigens, beta 2-microglobulin and enzymes by human amniotic epithelial cells. Nature. 1982;295(5847):325–7.

    Article  CAS  PubMed  Google Scholar 

  125. Scaggiante B, et al. Successful therapy of Niemann-Pick disease by implantation of human amniotic membrane. Transplantation. 1987;44(1):59–61.

    Article  CAS  PubMed  Google Scholar 

  126. Bembi B, Comelli M, Scaggiante B, Pineschi A, Rapelli S, Gornati R, et al. Treatment of sphingomyelinase deficiency by repeated implantations of amniotic epithelial cells. Am J Med Genet. 1992;44(4):527–33.

    Article  CAS  PubMed  Google Scholar 

  127. • Niknejad H, et al. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater. 2008;15:88–99 Discusses the biological properties of the amniotic membrane that makes it an ideal candidate for creating scaffolds that can be used in tissue engineering.

    Article  CAS  PubMed  Google Scholar 

  128. Benson-Martin J, Zammaretti P, Bilic G, Schweizer T, Portmann-Lanz B, Burkhardt T, et al. The Young’s modulus of fetal preterm and term amniotic membranes. Eur J Obstet Gynecol Reprod Biol. 2006;128(1-2):103–7.

    Article  PubMed  Google Scholar 

  129. Gobinathan S, Zainol SS, Azizi SF, Iman NM, Muniandy R, Hasmad HN, et al. Decellularization and genipin crosslinking of amniotic membrane suitable for tissue engineering applications. J Biomater Sci Polym Ed. 2018;29(17):2051–67.

    Article  CAS  PubMed  Google Scholar 

  130. Wang F, Liu T, Yang L, Zhang G, Liu H, Yi X, et al. Urethral reconstruction with tissue-engineered human amniotic scaffold in rabbit urethral injury models. Med Sci Monit. 2014;20:2430–8.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Lai JY. Photo-cross-linking of amniotic membranes for limbal epithelial cell cultivation. Mater Sci Eng C Mater Biol Appl. 2014;45:313–9.

    Article  CAS  PubMed  Google Scholar 

  132. Murphy SV, Skardal A, Nelson RA Jr, Sunnon K, Reid T, Clouse C, et al. Amnion membrane hydrogel and amnion membrane powder accelerate wound healing in a full thickness porcine skin wound model. Stem Cells Transl Med. 2020;9(1):80–92.

    Article  CAS  PubMed  Google Scholar 

  133. Murphy SV, Skardal A, Song L, Sutton K, Haug R, Mack DL, et al. Solubilized amnion membrane hyaluronic acid hydrogel accelerates full-thickness wound healing. Stem Cells Transl Med. 2017;6(11):2020–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ramakrishnan R, Krishnan LK, Nair RP, Krishnan KV. Reinforcement of amniotic membrane with fibrin coated poly-[Lactide-co-Glycolide-co-Caprolactone] terpolymer containing silver nanoparticles for potential wound healing applications. Int J Polym Mater Polym Biomater. 2020;69(12):810–9.

    Article  CAS  Google Scholar 

  135. Toniato TV, Stocco TD, dos Martins DS, Santanna LB, Tim CR, Marciano FR, et al. Hybrid chitosan/amniotic membrane-based hydrogels for articular cartilage tissue engineering application. Int J Polym Mater Polym Biomater. 2019;69(15):961–70.

    Article  CAS  Google Scholar 

  136. Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017;27(3):172–88.

    Article  CAS  PubMed  Google Scholar 

  137. van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.

    Article  PubMed  CAS  Google Scholar 

  138. Kusuma GD, Carthew J, Lim R, Frith JE. Effect of the microenvironment on mesenchymal stem cells paracrine signalling: opportunities to engineer the therapeutic effect. Stem Cells Dev. 2017;26(9):617–31.

    Article  CAS  PubMed  Google Scholar 

  139. Riazifar M, Pone EJ, Lötvall J, Zhao W. Stem cell extracellular vesicles: extended messages of regeneration. Annu Rev Pharmacol Toxicol. 2017;57:125–54.

    Article  CAS  PubMed  Google Scholar 

  140. Kusuma GD, Barabadi M, Tan JL, Morton DAV, Frith JE, Lim R. To protect and to preserve: novel preservation strategies for extracellular vesicles. Front Pharmacol. 2018;9:1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tan JL, Lau SN, Leaw B, Nguyen HPT, Salamonsen LA, Saad MI, et al. Amnion epithelial cell-derived exosomes restrict lung injury and enhance endogenous lung repair. Stem Cells Transl Med. 2018;7(2):180–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. • Alhomrani M, et al. The human amnion epithelial cell secretome decreases hepatic fibrosis in mice with chronic liver fibrosis. Front Pharmacol. 2017;8:748 Provides novel evidence that extracellular vesicles secreted by hAECs significantly reduces liver fibrosis and macrophage infiltration, further highlighting the therapeutic potential of hAEC-derived EVs.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Broughton B, Tran TN, Lim R, Wallace E, Kemp-Harper B. A8321 Delayed post-stroke administration of human amnion epithelial cell-derived exosomes improve outcomes. J Hypertens. 2018;36:e51.

    Article  Google Scholar 

  144. • Zhao B, et al. Exosomal microRNAs derived from human amniotic epithelial cells accelerate wound healing by promoting the proliferation and migration of fibroblasts. Stem Cells Int. 2018;2018:5420463 Demonstrates the role exosomal microRNA from hAECs play in promoting the wound healing response by reducing collagen deposition in vivo.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Zhao B, Zhang Y, Han S, Zhang W, Zhou Q, Guan H, et al. Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation. J Mol Histol. 2017;48(2):121–32.

    Article  CAS  PubMed  Google Scholar 

  146. Zhang Q, Sun J, Huang Y, Bu S, Guo Y, Gu T, et al. Human amniotic epithelial cell-derived exosomes restore ovarian function by transferring microRNAs against apoptosis. Mol Ther Nucleic Acids. 2019;16:407–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Figures 1 and 2 were created with BioRender.com.

RHMS is supported by NHMRC project grant GNT1144265. MG is supported by an MRFF Stem Cell Mission grant. DZ is supported by NHMRC project grant GNT1141946. GDM is supported by the Rebecca L. Cooper Medical Research Foundation. RL is supported by an NHMRC career development fellowship. This work is supported by the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Lim.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Prenatal Therapies

Renate H. M. Schwab and Mihiri Goonetilleke are joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwab, R.H.M., Goonetilleke, M., Zhu, D. et al. Amnion Epithelial Cells — a Therapeutic Source. Curr Stem Cell Rep 7, 13–29 (2021). https://doi.org/10.1007/s40778-021-00187-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-021-00187-5

Keywords

Navigation