Human Amniotic Membrane: A Potential Tissue and Cell Source for Cell Therapy and Regenerative Medicine

  • Chapter
  • First Online:
Emerging Trends in Cell and Gene Therapy

Abstract

The human amniotic membrane (HAM) is the innermost membrane surrounding the fetus. HAM is a highly abundant and readily available tissue that is becoming appreciated as an alternative to adult bone marrow mesenchymal stem cells (BM-MSCs) useful for cell therapy and regenerative medicine. This tissue provides high efficiency in noninvasive and safe MSC recovery with no intrusive procedures. HAM contains two cell types from different embryological origins: human amnion epithelial cells (hAECs), derived from the embryonic ectoderm, and human amnion mesenchymal stromal cells (hAMSCs), derived from the embryonic mesoderm. hAMSCs and hAECs are immune-privileged cells that can be isolated without the sacrifice of human embryos, avoiding immunological rejection problems and the ethical conflict of using human embryonic stem cells (hESCs). Regarding their immunophenotype, both cell types demonstrate the expression of the common well-defined human mesenchymal and embryonic stem cell markers and the absence of hematopoietic markers. Moreover, both cell populations have similar multipotential for in vitro differentiation into all three germ layers: ectoderm, mesoderm, and endoderm lineages. Indeed, the potential application of amnion-derived cells in a variety of diseases, in particular those associated with degenerative processes, is under clinical or preclinical investigation. The HAM has other biological properties important for tissue engineering, including anti-fibrosis, anti-inflammatory, anti-scarring, antimicrobial, as well as adequate mechanical properties and low immunogenicity. Therefore, amnion allografts are widely applied in ophthalmology, plastic surgery, dermatology, and gynecology. In this chapter, the localization, isolation, characterization, and differentiation potential of amnion-derived cells are discussed. Moreover, the potential clinical applications of either amnion-derived cells or the whole HAM are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mrugala D, Dossat N, Ringe J, Delorme B, Coffy A, Bony C, Charbord P, Häupl T, Daures J-P, Noël D, Jorgensen C (2009) Gene expression profile of multipotent mesenchymal stromal cells: identification of pathways common to TGFβ3/BMP2-induced chondrogenesis. Cloning Stem Cells 11:61–76

    PubMed  CAS  Google Scholar 

  2. Kastrinaki M-C, Andreakou I, Charbord P, Papadaki HA (2008) Isolation of human bone marrow mesenchymal stem cells using different membrane markers: comparison of colony/cloning efficiency, differentiation potential, and molecular profile. Tissue Eng Part C Methods 14:333–339

    PubMed  CAS  Google Scholar 

  3. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    PubMed  CAS  Google Scholar 

  4. Yu SJ, Soncini M, Kaneko Y, Hess DC, Parolini O, Borlongan CV (2009) Amnion: a potent graft source for cell therapy in stroke. Cell Transplant 18:111–118

    PubMed  Google Scholar 

  5. Barlow S, Brooke G, Chatterjee K, Price G, Pelekanos R, Rossetti T, Doody M, Venter D, Pain S, Gilshenan K, Atkinson K (2008) Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem Cells Dev 17:1095–1108

    PubMed  CAS  Google Scholar 

  6. Minguell JJ, Conget P, Erices A (2000) Biology and clinical utilization of mesenchymal progenitor cells. Braz J Med Biol Res 33:881–887

    PubMed  CAS  Google Scholar 

  7. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    PubMed  CAS  Google Scholar 

  8. Pasquinelli G, Tazzari P, Ricci F, Vaselli C, Buzzi M, Conte R (2007) Ultrastructural characteristics of human mesenchymal stromal (stem) cells derived from bone marrow and term placenta. Ultrastruct Pathol 31:23–31

    PubMed  Google Scholar 

  9. Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM, Johnstone B (1998) The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am 80:1745–1757

    PubMed  CAS  Google Scholar 

  10. Alsalameh S, Amin R, Gemba T, Lotz M (2004) Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 50:1522–1532

    PubMed  Google Scholar 

  11. Fickert S, Fiedler J, Brenner RE (2003) Identification, quantification and isolation of mesenchymal progenitor cells from osteoarthritic synovium by fluorescence automated cell sorting. Osteoarthritis Cartilage 11:790–800

    PubMed  CAS  Google Scholar 

  12. De Bari C, Dell’Acio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44:1928–1942

    PubMed  Google Scholar 

  13. Dounchis JS, Goomer RS, Harwood FL, Khatod M, Coutts RD, Amiel D (1997) Chondrogenic phenotype of perichondrium-derived chondroprogenitor cells is influenced by transforming growth factor-beta 1. J Orthop Res 15:803–807

    PubMed  CAS  Google Scholar 

  14. Nakahara H, Bruder SP, Haynesworth SE, Holecek JJ, Baber MA, Goldberg VM, Caplan AI (1990) Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone 11:181–188

    PubMed  CAS  Google Scholar 

  15. Young HE, Steele TA, Bray RA, Hudson J, Floyd JA, Hawkins K, Thomas K, Austin T, Edwards C, Cuzzourt J, Duenzl M, Lucas PA, Black AC Jr (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 264:51–62

    PubMed  CAS  Google Scholar 

  16. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    PubMed  CAS  Google Scholar 

  17. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrik MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    PubMed  CAS  Google Scholar 

  18. Villaron EM, Almeida J, Lopez-Holgado N, Alcoceba M, Sánchez-Abarca LI, Sanchez-Guijo FM, Alberca M, Pérez-Simon JA, San Miguel JF, Del Cañizo MC (2004) Mesenchymal stem cells are present in peripheral blood and can engraft after allogenic haematopoietic stem cell transplantation. Haematologica 89:1421–1427

    PubMed  Google Scholar 

  19. Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG (2001) Circulating skeletal stem cells. J Cell Biol 153:1133–1140

    PubMed  CAS  Google Scholar 

  20. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, Maini RN (2000) Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2:477–488

    PubMed  CAS  Google Scholar 

  21. Le Blanc K, Götherström C, Ringdén O, Hassan M, McMahon R, Horwitz E, Anneren G, Axelsson O, Nunn J, Ewald U, Nordén Lindeberg S, Jansson M, Dalton A, Aström E, Westgren M (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 79:1607–1614

    PubMed  Google Scholar 

  22. In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1345

    Google Scholar 

  23. Steigman SA, Fauza DO (2007) Isolation of mesenchymal stem cells from amniotic fluid and placenta. Curr Protoc Stem Cell Biol Chapter 1:Unit 1E.2

    Google Scholar 

  24. Matikainen T, Laine J (2005) Placenta-an alternative source of stem cells. Toxicol Appl Pharmacol 207(2 Suppl):544–549

    PubMed  Google Scholar 

  25. Fauza D (2004) Amniotic fluid and placental stem cells. Best Pract Res Clin Obstet Gynaecol 18:877–891

    PubMed  Google Scholar 

  26. Samuel GN, Kerridge IH, O’Brien TA (2008) Umbilical cord blood banking: public good or private benefit? Med J Aust 188:533–535

    PubMed  Google Scholar 

  27. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25:1384–1392

    PubMed  CAS  Google Scholar 

  28. McGuckin CP, Forraz N, Baradez MO, Navran S, Zhao J, Urban R, Tilton R, Denner L (2005) Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif 38:245–255

    PubMed  CAS  Google Scholar 

  29. Mareschi K, Biasin E, Piacibello W, Aglietta M, Madon E, Fagioli F (2001) Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 86:1099–1100

    PubMed  CAS  Google Scholar 

  30. You Q, Cai L, Zheng J, Tong X, Zhang D, Zhang Y (2008) Isolation of human mesenchymal stem cells from third-trimester amniotic fluid. Int J Gynaecol Obstet 103:149–152

    PubMed  CAS  Google Scholar 

  31. Díaz-Prado S, Muíños-López E, Hermida-Gómez T, Rendal-Vázquez ME, Fuentes-Boquete I, de Toro FJ, Blanco FJ (2011) Isolation and characterization of mesenchymal stem cells from human amniotic membrane. Tissue Eng Part C Methods 17:49–59

    Google Scholar 

  32. Díaz-Prado S, Muíños-López E, Hermida-Gómez T, Rendal-Vázquez ME, Fuentes-Boquete I, de Toro FJ, Blanco FJ (2010) Multilineage differentiation potential of cells isolated from the human amniotic membrane. J Cell Biochem 111:846–857

    PubMed  Google Scholar 

  33. Alviano F, Fossati V, Marchionni C, Arpinati M, Bonsi L, Franchina M, Lanzoni G, Cantoni S, Cavallini C, Bianchi F, Tazzari PL, Pasquinelli G, Foroni L, Ventura C, Grossi A, Bagnara GP (2007) Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with ability to differentiate into endothelial cells in vitro. BMC Dev Biol 7:11

    PubMed  Google Scholar 

  34. Bianco P, Robey PG (2001) Stem cells in tissue engineering. Nature 414:118–121

    PubMed  CAS  Google Scholar 

  35. Jung DI, Ha J, Kang BT, Kim JW, Quan FS, Lee JH, Woo EJ, Park HM (2009) A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury. J Neurol Sci 285:67–77

    PubMed  Google Scholar 

  36. Koga H, Shimaya M, Muneta T, Nimura A, Morito T, Hayashi M, Suzuki S, Ju YJ, Mochizuki T, Sekiya I (2008) Local adherent technique for transplanting mesenchymal stem cells as a potential treatment of cartilage defect. Arthritis Res Ther 10:R84

    PubMed  Google Scholar 

  37. Hombach-Klonisch S, Panigrahi S, Rashedi I, Seifert A, Alberti E, Pocar P, Kurpisz M, Schulze-Osthoff K, Mackiewicz A, Los M (2008) Adult stem cells and their trans-differentiation potential–perspectives and therapeutic applications. J Mol Med 86:1301–1314

    PubMed  Google Scholar 

  38. Pittenger MF (2008) Mesenchymal stem cells from adult bone marrow. Methods Mol Biol 449:27–44

    PubMed  CAS  Google Scholar 

  39. Tsai MS, Hwang SM, Chen KD, Lee YS, Hsu LW, Chang YJ, Wang CN, Peng HH, Chang YL, Chao AS, Chang SD, Lee KD, Wang TH, Wang HS, Soong YK (2007) Functional network analysis on the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow. Stem Cells 25:2511–2523

    PubMed  CAS  Google Scholar 

  40. Wei JP, Nawata M, Wakitani S, Kametani K, Ota M, Toda A, Konishi I, Ebara S, Nikaido T (2009) Human amniotic mesenchymal cells differentiate into chondrocytes. Cloning Stem Cells 11:19–25

    PubMed  CAS  Google Scholar 

  41. Ilancheran S, Moodley Y, Manuelpillai U (2009) Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta 30:2–10

    PubMed  CAS  Google Scholar 

  42. Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U (2007) Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 77:577–588

    PubMed  CAS  Google Scholar 

  43. Insausti CL, Blanquer M, Bleda P, Iniesta P, Majado MJ, Castellanos G, Moraleda JM (2010) The amniotic membrane as a source of stem cells. Histol Histopathol 25:91–98

    PubMed  CAS  Google Scholar 

  44. Abdulrazzak H, Moschidou D, Jones G, Guillot PV (2010) Biological characteristics of stem cells from foetal, cord blood and extraembryonic tissues. J R Soc Interface 7:S689–S706

    PubMed  Google Scholar 

  45. Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater 15:88–99

    PubMed  CAS  Google Scholar 

  46. ** CZ, Park SR, Choi BH, Lee KY, Kang CK, Min BH (2007) Human amniotic membrane as a delivery matrix for articular cartilage repair. Tissue Eng 13:693–702

    PubMed  CAS  Google Scholar 

  47. Wilshaw SP, Kearney JN, Fisher J, Ingham E (2006) Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng 12:2117–2129

    PubMed  CAS  Google Scholar 

  48. Dovebra MP, Pereira PNG, Deprest J, Zwijsen A (2010) On the origin of amniotic stem cells: of mice and men. Int J Dev Biol 54:761–777

    Google Scholar 

  49. Parolini O, Soncini M, Evangelista M, Schmidt D (2009) Amniotic membrane and amniotic fluid-derived cells: potential tools for regenerative medicine? Regen Med 4:275–291

    PubMed  CAS  Google Scholar 

  50. Tamagawa T, Ishiwata I, Ishikawa H, Nakamura Y (2008) Induced in vitro differentiation of neural-like cells from human amnion-derived fibroblast-like cells. Hum Cell 21:38–45

    PubMed  Google Scholar 

  51. Bilic G, Zeisberger SM, Mallik AS, Zimmermann R, Zisch AH (2008) Comparative characterization of cultured human term amnion epithelial and mesenchymal stromal cells for application in cell therapy. Cell Transplant 17:955–968

    PubMed  Google Scholar 

  52. Sakuragawa N, Yoshikawa H, Sasaki M (1992) Amniotic tissue transplantation: clinical and biochemical evaluations for some lysosomal storage diseases. Brain Dev 14:7–11

    PubMed  CAS  Google Scholar 

  53. Scaggiante B, Pineschi A, Sustersich M, Andolina M, Agosti E, Romeo D (1987) Successful therapy of Niemann–Pick disease by implantation of human amniotic membrane. Transplantation 44:59–61

    PubMed  CAS  Google Scholar 

  54. Akle CA, Adinolfi M, Welsh KI, Leibowitz S, McColl I (1981) Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 2:1003–1005

    PubMed  CAS  Google Scholar 

  55. Kim SS, Song CK, Shon SK, Lee KY, Kim CH, Lee MJ, Wang L (2009) Effects of human amniotic membrane grafts combined with marrow mesenchymal stem cells on healing of full-thickness skin defects in rabbits. Cell Tissue Res 336:59–66

    PubMed  Google Scholar 

  56. Chang Y-J, Hwang S-M, Tseng C-P, Cheng F-C, Huang S-H, Hsu L-F, Hsu L-W, Tsai M-S (2010) Isolation of mesenchymal stem cells with neurogenic potential from the mesoderm of the amniotic membrane. Cells Tissues Organs 192:93–105

    PubMed  Google Scholar 

  57. Hennerbichler S, Reichl B, Pleiner D, Gabriel C, Eibl J, Redl H (2007) The influence of various storage conditions on cell viability in amniotic membrane. Cell Tissue Bank 8:1–8

    PubMed  CAS  Google Scholar 

  58. Toda A, Okabe M, Yoshida T, Nikaido T (2007) The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 105:215–228

    PubMed  CAS  Google Scholar 

  59. Soncini M, Vertua E, Gibelli L, Zorzi F, Denegri M, Albertini A, Wengler GS, Parolini O (2007) Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med 1:296–305

    PubMed  CAS  Google Scholar 

  60. Portmann-Lanz CB, Schoeberlein A, Huber A, Sager R, Malek A, Holzgreve W, Surbek DV (2006) Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol 194:664–673

    PubMed  CAS  Google Scholar 

  61. Wolbank S, Peterbauer A, Fahrner M, Hennerbichler S, van Griensven M, Stadler G, Redl H, Gabriel C (2007) Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng 13:1173–1183

    PubMed  CAS  Google Scholar 

  62. Hao Y, Ma DH, Hwang DG, Kim WS, Zhang F (2000) Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 19:348–352

    PubMed  CAS  Google Scholar 

  63. Bailo M, Soncini M, Vertua E, Signoroni PB, Sanzone S, Lombardi G, Arienti D, Calamani F, Zatti D, Paul P, Albertini A, Zorzi F, Cavagnini A, Candotti F, Wengler GS, Parolini O (2004) Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation 78:1439–1448

    PubMed  Google Scholar 

  64. Dazzi F, Marelli-Berg F (2008) Mesenchymal stem cells for graft-versus-host disease: close encounters with T cells. Eur J Immunol 38:1479–1482

    PubMed  CAS  Google Scholar 

  65. Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido T, Portmann-Lanz CB, Sankar V, Soncini M, Stadler G, Surbek D, Takahashi TA, Redl H, Sakuragawa N, Wolbank S, Zeisberger S, Zisch A, Strom SC (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells 26:300–311

    PubMed  Google Scholar 

  66. Miki T, Marongiu F, Ellis E, Strom S (2007) Isolation of amniotic epithelial stem cells. Curr Protoc Stem Cell Biol 3:1E.3.1–1E.3.9

    Google Scholar 

  67. Miki T, Strom SC (2006) Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev 2:133–142

    PubMed  CAS  Google Scholar 

  68. Mihu CM, Rus Ciucă D, Soritău O, Suşman S, Mihu D (2009) Isolation and characterization of mesenchymal stem cells from the amniotic membrane. Rom J Morphol Embryol 50:73–77

    PubMed  Google Scholar 

  69. Kobayashi M, Yakuwa T, Sasaki K, Sato K, Kikuchi A, Kamo I, Yokoyama Y, Sakuragawa N (2008) Multilineage potential of side population cells from human amnion mesenchymal layer. Cell Transplant 17:291–301

    PubMed  CAS  Google Scholar 

  70. Marcus AJ, Woodbury D (2008) Fetal stem cells from extra-embryonic tissues: do not discard. J Cell Mol Med 12:730–742

    PubMed  CAS  Google Scholar 

  71. Pappa KI, Anagnou NP (2009) Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med 4:423–433

    PubMed  Google Scholar 

  72. Miki T, Mitamura K, Ross MA, Stolz DB, Strom SC (2007) Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. J Reprod Immunol 75:91–96

    PubMed  CAS  Google Scholar 

  73. Miki T, Lehmann T, Cai H, Stolz DB, Strom SC (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559

    PubMed  CAS  Google Scholar 

  74. Tamagawa T, Oi S, Ishiwata I, Ishikawa H, Nakamura Y (2007) Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro. Hum Cell 20:77–84

    PubMed  Google Scholar 

  75. Sakuragawa N, Kakinuma K, Kikuchi A, Okano H, Uchida S, Kamo I, Kobayashi M, Yokoyama Y (2004) Human amnion mesenchyme cells express phenotypes of neuroglial progenitor cells. J Neurosci Res 78:208–214. Erratum in: J Neurosci Res 2005; 79:725

    PubMed  CAS  Google Scholar 

  76. Kim J, Kang HM, Kim H, Kim MR, Kwon HC, Gye MC, Kang SG, Yang HS, You J (2007) Ex vivo characteristics of human amniotic membrane-derived stem cells. Cloning Stem Cells 9:581–594

    PubMed  CAS  Google Scholar 

  77. Zhao P, Ise H, Hongo M, Ota M, Konishi I, Nikaido T (2005) Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 79:528–535

    PubMed  Google Scholar 

  78. Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S (1999) The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 126:1269–1280

    PubMed  CAS  Google Scholar 

  79. Li W, He H, Chen YT, Hayashida Y, Tseng SC (2008) Reversal of myofibroblasts by amniotic membrane stromal extract. J Cell Physiol 215:657–664

    PubMed  CAS  Google Scholar 

  80. Miki T, Marongiu F, Ellis EC, Dorko K, Mitamura K, Ranade A, Gramignoli R, Davila J, Strom SC (2009) Production of hepatocyte-like cells from human amnion. Methods Mol Biol 481:155–168

    PubMed  CAS  Google Scholar 

  81. Tamagawa T, Ishiwata I, Saito S (2004) Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro. Hum Cell 17:125–130

    PubMed  Google Scholar 

  82. Kakishita K, Elwan MA, Nakao N, Itakura T, Sakuragawa N (2000) Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson’s disease: a potential source of donor for transplantation therapy. Exp Neurol 165:27–34

    PubMed  CAS  Google Scholar 

  83. Elwan MA, Sakuragawa N (1997) Evidence for synthesis and release of catecholamines by human amniotic epithelial cells. Neuroreport 8:3435–3438

    PubMed  CAS  Google Scholar 

  84. Kakishita K, Nakao N, Sakuragawa N, Itakura T (2003) Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res 980:48–56

    PubMed  CAS  Google Scholar 

  85. Uchida S, Inanaga Y, Kobayashi M, Hurukawa S, Araie M, Sakuragawa N (2000) Neurotrophic function of conditioned medium from human amniotic epithelial cells. J Neurosci Res 62:585–590

    PubMed  CAS  Google Scholar 

  86. Kosuga M, Takahashi S, Sasaki K, Enosawa S, Li XK, Okuyama S, Fu**o M, Suzuki S, Yamada M, Matsuo N, Sakuragawa N, Okuyama T (2000) Phenotype correction in murine mucopolysaccharidosis type VII by transplantation of human amniotic epithelial cells after adenovirus-mediated gene transfer. Cell Transplant 9:687–692

    PubMed  CAS  Google Scholar 

  87. Sakuragawa N, Enosawa S, Ishii T, Thangavel R, Tashiro T, Okuyama T, Suzuki S (2000) Human amniotic epithelial cells are promising transgene carriers for allogenic cell transplantation into liver. J Hum Genet 45:171–176

    PubMed  CAS  Google Scholar 

  88. Takashima S, Ise H, Zhao P, Akaike T, Nikaido T (2004) Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. Cell Struct Funct 29:73–84

    PubMed  CAS  Google Scholar 

  89. Davila JC, Cezar GG, Thiede M, Strom S, Miki T, Trosko J (2004) Use and application of stem cells in toxicology. Toxicol Sci 79:214–223

    PubMed  CAS  Google Scholar 

  90. Wei JP, Zhang TS, Kawa S, Aizawa T, Ota M, Akaike T, Kato K, Konishi I, Nikaido T (2003) Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transplant 12:545–552

    PubMed  Google Scholar 

  91. Parolini O, Caruso M (2011) Review: preclinical studies on placenta-derived cells and amniotic membrane: an update. Placenta 32(Suppl 2):S186–S195

    PubMed  Google Scholar 

  92. Moodley Y, Ilancheran S, Samuel C, Vaghjiani V, Atienza D, Williams ED, Jenkin G, Wallace E, Trounson A, Manuelpillai U (2010) Human amnion epithelial cell transplantation abrogates lung fibrosis and augments repair. Am J Respir Crit Care Med 182:643–651

    PubMed  CAS  Google Scholar 

  93. Manuelpillai U, Tchongue J, Lourensz D, Vaghjiani V, Samuel CS, Liu A, Williams ED, Sievert W (2010) Transplantation of human amnion epithelial cells reduces hepatic fibrosis in immunocompetent CCl4-treated mice. Cell Transplant 19:1157–1168

    PubMed  Google Scholar 

  94. Kawamichi Y, Cui CH, Toyoda M, Makino H, Horie A, Takahashi Y, Matsumoto K, Saito H, Ohta H, Saito K, Umezawa A (2010) Cells of extraembryonic mesodermal origin confer human dystrophin in the mdx model of Duchenne muscular dystrophy. J Cell Physiol 223:695–702

    PubMed  CAS  Google Scholar 

  95. Liu T, Wu J, Huang Q, Hou Y, Jiang Z, Zang S, Guo L (2008) Human amniotic epithelial cells ameliorate behavioural dysfunction and reduce infarct size in the rat middle cerebral artery occlusion model. Shock 29:603–611

    PubMed  Google Scholar 

  96. Wu ZY, Hui GZ, Lu Y, Wu X, Guo LH (2006) Transplantation of human amniotic epithelial cells improves hindlimb function in rats with spinal cord injury. Chin Med J (Engl) 119:2101–2107

    Google Scholar 

  97. Davis JW (1910) Skin transplantation with a review of 550 cases at the John Hopkins Hospital. Johns Hopkins Med J 15:307

    Google Scholar 

  98. Tsai RJ, Tsai RY (2010) Ex vivo expansion of corneal stem cells on amniotic membrane and their outcome. Eye Contact Lens 36:305–309

    PubMed  Google Scholar 

  99. Sangwan VS, Burman S, Tejwani S, Mahesh SP, Murthy R (2007) Amniotic membrane transplantation: a review of current indications in the management of ophthalmic disorders. Indian J Ophthalmol 55:251–260

    PubMed  Google Scholar 

  100. Gomes JA, Romano A, Santos MS, Dua HS (2005) Amniotic membrane use in ophthalmology. Curr Opin Ophthalmol 16:233–240

    PubMed  Google Scholar 

  101. Dua HS, Gomes JA, King AJ, Maharajan VS (2004) The amniotic membrane in ophthalmology. Surv Ophthalmol 49:51–77

    PubMed  Google Scholar 

  102. Grueterich M, Espana EM, Tseng SC (2003) Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche. Surv Ophthalmol 48:631–646

    PubMed  Google Scholar 

  103. Tejwani S, Kolari RS, Sangwan VS, Rao GN (2007) Role of amniotic membrane graft for ocular chemical and thermal injuries. Cornea 26:21–26

    PubMed  Google Scholar 

  104. Rinastiti M, Harijadi, Santoso AL, Sosroseno W (2006) Histological evaluation of rabbit gingival wound healing transplanted with human amniotic membrane. Int J Oral Maxillofac Surg 35:247–251

    PubMed  CAS  Google Scholar 

  105. Santos MS, Gomes JAP, Hofling-Lima AL, Rizzo LV, Romano AC, Belfort R Jr (2005) Survival analysis of conjunctival limbal grafts and amniotic membrane transplantation in eyes with total limbal stem cell deficiency. Am J Ophthalmol 140:223–230

    PubMed  Google Scholar 

  106. Meller D, Pires RT, Mack RJ, Figueiredo F, Heiligenhaus A, Park WC, Prabhasawat P, John T, McLeod SD, Steuhl KP, Tseng SC (2000) Amniotic membrane transplantation for acute chemical or thermal burns. Ophthalmology 107:980–989

    PubMed  CAS  Google Scholar 

  107. Morton KE, Dewhurst CJ (1986) Human amnion in the treatment of vaginal malformations. Br J Obstet Gynaecol 93:50–54

    PubMed  CAS  Google Scholar 

  108. Díaz-Prado S, Rendal-Vázquez ME, Muíños López E, Hermida-Gómez T, Rodríguez-Cabarcos M, Fuentes-Boquete I, de Toro FJ, Blanco FJ (2010) Potential use of the human amniotic membrane as a scaffold in human articular cartilage repair. Cell Tissue Bank 11:183–195

    PubMed  Google Scholar 

Download references

Acknowledgments

Our research was supported by Servizo Galego de Saúde, Xunta de Galicia (PS07/84), Cátedra Bioiberica de la Universidade da Coruña, and Instituto de Salud Carlos III CIBER BBN CB06-01-0040; Ministerio Ciencia en Innovacion PLE2009-0144; Fondo Investigacion Sanitaria-PI 08/2028; and funds from FEDER (European Community). Rede Galega de Terapia Celular (REDICENT, CN2012/142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Blanco Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Diaz-Prado, S., Muiños-Lopez, E., Fuentes-Boquete, I., de Toro, F.J., Garcia, F.J.B. (2013). Human Amniotic Membrane: A Potential Tissue and Cell Source for Cell Therapy and Regenerative Medicine. In: Danquah, M., Mahato, R. (eds) Emerging Trends in Cell and Gene Therapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-417-3_3

Download citation

Publish with us

Policies and ethics

Navigation