Log in

Sequential symmetric periodic motions in a symmetric discontinuous dynamical system

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, grazing-induced sequential symmetric periodic motions in a symmetric discontinuous dynamical system with a symmetric hyperbolic boundary are studied analytically. The analytical switching conditions and grazing conditions at the hyperbola boundary were presented analytically. The sequential symmetric period-(2m−1) motions caused by grazing bifurcations are discussed. Between the two sequential symmetric periodic motions, other symmetric and asymmetric periodic motions exist. The analytical predictions of periodic motions with specific map** structures are carried out, and the corresponding stability of periodic motions are determined through eigenvalue analysis. The complexity of the sequential symmetric periodic motions was illustrated through phase trajectories, and the slow and fast movements in trajectories were observed. Such sequential symmetric period-(2m−1) motions in symmetric discontinuous dynamical systems are similar to sequential periodic motions in the van der Pol oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

No data and material are available.

References

  1. den Hartog JP (1931) Forced vibrations with Coulomb and viscous dam**. Trans Am Soc Mech Eng 53:107–115

    MATH  Google Scholar 

  2. Levitan ES (1960) Forced oscillation of a spring-mass system having combined coulomb and viscous dam**. J Acoust Soc Am 32:1265–1269

    Article  MathSciNet  Google Scholar 

  3. Filippov AF (1964) Differential equations with discontinuous right-hand side. Am Math Soc Trans Ser 42(2):199–231

    MATH  Google Scholar 

  4. Filippov AF (1988) differential equations with discontinuous righthand sides. Kluwer, Dordrecht

    Book  Google Scholar 

  5. Aizerman MA, Pyatnitsky ES (1974) Fundamentals of the theory of discontinuous systems. Autom Remote Control Ser 1(35):1066–1079

    Google Scholar 

  6. Aizerman MA, Pyatnitsky ES (1974) Fundamentals of the theory of discontinuous systems. Autom Remote Control Ser 2(35):1241–1262

    Google Scholar 

  7. Utkin V (1977) Variable structure systems with sliding modes. IEEE Trans Autom Control 22(2):212–222

    Article  MathSciNet  MATH  Google Scholar 

  8. Feigin MI (1970) Doubling of the oscillation period with C-bifurcations in piecewise-continuous systems. J Appl Math Mech 34:861–869

    Article  MathSciNet  Google Scholar 

  9. Feigin MI (1978) On the structure of C-bifurcation boundaries of piecewise continuous systems. J Appl Math Mech 42:820–829

    Article  MathSciNet  Google Scholar 

  10. Karnopp D (1985) Computer simulation of stick-slip friction in mechanical dynamic systems. J Dyn Syst Meas Contr 107:100–103

    Article  Google Scholar 

  11. Leine RI, de Kraker A, van Campen DH, van den Steen L (1998) Stick-slip vibrations induced by alternate friction models. Nonlinear Dyn 16(1):41–51

    Article  MATH  Google Scholar 

  12. Nordmark AB (1991) Non-periodic motion caused by grazing incidence in an impact oscillator. J Sound Vib 145(2):279–297

    Article  Google Scholar 

  13. Nordmark AB (1997) Universal limit map** in grazing bifurcations. Phys Rev E 55:266–270

    Article  Google Scholar 

  14. Nordmark AB (2001) Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators. Nonlinearity 14:1517–1542

    Article  MathSciNet  MATH  Google Scholar 

  15. Nordmark AB, Kowalczyk P (2006) A codimension-two scenario of sliding solutions in grazing-sliding bifurcations. Nonlinearity 19:1–26

    Article  MathSciNet  MATH  Google Scholar 

  16. Shaw SW, Holmes PJ (1983) A periodically forced piecewise linear oscillator. J Sound Vib 90(1):129–155

    Article  MathSciNet  MATH  Google Scholar 

  17. Han RPS, Luo ACJ, Deng W (1995) Chaotic motion of a horizontal impact pair. J Sound Vib 181:231–250

    Article  MathSciNet  MATH  Google Scholar 

  18. Luo ACJ, Han RPS (1996) The dynamics of a bouncing ball with a sinusoidally vibrating table revisited. Nonlinear Dyn 10(1):1–18

    Article  MathSciNet  Google Scholar 

  19. Bazhenov VA, Lizunov PP, Pogorelova OS, Postnikova TG, Otrashevskaia VV (2015) Stability and bifurcations analysis for 2-DOF vibro-impact system by parameter continuation method. Part I: loading curve. J Appl Nonlinear Dyn 4(4):357–370

    Article  Google Scholar 

  20. Bazhenov VV, Pogorelova OS, Postnikova TG (2019) Breakup of closed curve-quasiperiodic route to chaos in vibro-impact system. Discontin Nonlinearity Complex 8(3):299–311

    Article  Google Scholar 

  21. Akhmet MU, Kıvılcım A (2015) Discontinuous dynamics with grazing points. Commun Nonlinear Sci Numer Simul 38:218–242

    Article  MathSciNet  MATH  Google Scholar 

  22. Akhmet MU, Kıvılcım A (2018) van der Pol oscillators generated from grazing dynamics. Discontin Nonlinearity Complex 7(3):259–274

    Article  MATH  Google Scholar 

  23. Luo ACJ (2005) A theory for non-smooth dynamic systems on the connectable domains. Commun Nonlinear Sci Numer Simul 10(1):1–55

    Article  MathSciNet  MATH  Google Scholar 

  24. Luo ACJ (2005) Imaginary, sink and source flows in the vicinity of the separatrix of non-smooth dynamic systems. J Sound Vib 28:443–456

    Article  MathSciNet  MATH  Google Scholar 

  25. Luo ACJ, Gegg BC (2006) Stick and non-stick periodic motions in periodically forced oscillators with dry friction. J Sound Vib 291:132–168

    Article  MathSciNet  MATH  Google Scholar 

  26. Luo ACJ, Gegg BC (2006) Periodic motions in a periodically forced oscillator moving on an oscillating belt with dry friction. J Comput Nonlinear Dyn 1(3):212–220

    Article  Google Scholar 

  27. Luo ACJ, Gegg BC (2006) Dynamics of a harmonically excited oscillator with dry-friction on a sinusoidally time-varying, traveling surface. Int J Bifurc Chaos 16:3539–3566

    Article  MathSciNet  MATH  Google Scholar 

  28. Luo ACJ (2008) A theory for flow switchability in discontinuous dynamical systems. Nonlinear Anal Hybrid Syst 2(4):1030–1061

    Article  MathSciNet  MATH  Google Scholar 

  29. Luo ACJ, Rapp BM (2009) Flow switchability and periodic motions in a periodically forced, discontinuous dynamical system. Nonlinear Anal Real World Appl 10(5):3028–3044

    Article  MathSciNet  MATH  Google Scholar 

  30. Luo ACJ, Rapp BM (2010) On motions and switchability in a periodically forced, discontinuous system with a parabolic boundary. Nonlinear Anal Real World Appl 11(14):2624–2633

    Article  MathSciNet  MATH  Google Scholar 

  31. Luo ACJ (2012) Discontinuous dynamical systems. HEPSpringer, Bei**g/Berlin

    Book  MATH  Google Scholar 

  32. Luo ACJ, Huang JZ (2017) Complex dynamics of bouncing motions on boundaries and corners in a discontinuous dynamical system. ASME J Comput Nonlinear Dyn 12(6):061014

    Article  Google Scholar 

  33. Li L, Luo ACJ (2016) Periodic orbits in a second-order discontinuous system with an elliptic boundary. Int J Bifurc Chaos 26(13):1650224

    Article  MathSciNet  MATH  Google Scholar 

  34. Tang X, Fu X, Sun X (2019) Periodic motion for an oblique impact system with single degree of freedom. J Vib Test Syst Dyn 3(1):71–89

    Google Scholar 

  35. Tang X, Fu X, Sun X (2020) The dynamical behavior of a two degrees of freedom oblique impact system. Discontin Nonlinearity Complex 9(1):117–139

    Article  MATH  Google Scholar 

  36. Huang JZ, Fu XL (2019) Stability and chaos for an adjustable excited oscillator with system switch. Commun Nonlinear Sci Numer Simul 77:108–125

    Article  MathSciNet  MATH  Google Scholar 

  37. Huang JZ, Fu XL (2019) Complexity of dynamic system switching between two subsystems with cornered boundaries. Eur Phys J Spec Top 228:1385–1403

    Article  Google Scholar 

  38. Guo S, Luo ACJ (2020) An analytical prediction of periodic motions in a discontinuous dynamical system. J Vib Test Syst Dyn 4(4):377–388

    Google Scholar 

  39. Guo S, Luo ACJ (2020) Constructed limit cycles in a discontinuous dynamical system with multiple vector fields. J Vib Test Syst Dyn 5(1):33–51

    Google Scholar 

  40. Guo S, Luo ACJ (2021) A parameter study on periodic motions in a discontinuous dynamical system with two circular boundaries. Discontin Nonlinearity Complex 10(2):289–309

    Article  MATH  Google Scholar 

  41. Guo S, Luo ACJ (2021) On existence and bifurcations of periodic motions in discontinuous dynamical systems. Int J Bifurc Chaos 31(4):2150063

    Article  MathSciNet  MATH  Google Scholar 

  42. Li LP, Luo ACJ (2016) Periodic orbits and bifurcations in discontinuous system with a hyperbolic boundary. Int J Dyn Control 5:513–529

    Article  MathSciNet  Google Scholar 

  43. Li LP, Luo ACJ (2021) On Periodic solutions of a time-delayed, discontinuous system with a hyperbola switching control law. Int J Bifurc Chaos 31(2):2150032

    Article  MathSciNet  MATH  Google Scholar 

  44. Luo ACJ, Liu CP (2021) Analytical periodic motions in a discontinuous system with a switching hyperbola. Int J Dyn Control 9:379–391

    Article  MathSciNet  Google Scholar 

  45. Luo ACJ, Liu CP (2021) Analytical dynamics of a discontinuous dynamical system with a hyperbolic boundary. J Vib Test Syst Dyn 5(2):285–320

    Google Scholar 

  46. Levinson N (1949) A second order differential equation with singular solutions. Ann Math 50:127–154

    Article  MathSciNet  MATH  Google Scholar 

  47. Luo ACJ (2015) Discretization and implicit map** dynamics. HEP/Springer, Bei**g/Berlin

    Book  MATH  Google Scholar 

Download references

Funding

No funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert C. J. Luo.

Appendix

Appendix

Consider a linear damped oscillator with dimensionless parameters in the subdomain \(\Omega_{i}\)

$$ \ddot{x}^{(i)} + \delta^{(i)} \dot{x}^{(i)} + \alpha^{(i)} x^{(i)} = Q^{(i)} + Q_{0}^{(i)} \cos \Omega t $$
(A.1)

With the initial condition (\(x_{k} ,y_{k} ,t_{k}\)), the solutions for Eq. (A.1) are given as follows:

  • Case I: \(\Delta = (\delta^{(i)} )^{2} - 4\alpha^{(i)} > 0\)

    $$ \begin{aligned} x^{{(i)}} (t) = \,& C_{1} e^{{\lambda _{1}^{{(i)}} (t - t_{k} )}} + C_{2} e^{{\lambda _{2}^{{(i)}} (t - t_{k} )}} + A^{{(i)}} \cos \Omega t \\ & + B^{{(i)}} \sin \Omega t + \tfrac{1}{{\alpha ^{{(i)}} }}Q^{{(i)}} , \\ y^{{(i)}} (t) =\, & \dot{x}^{{(i)}} (t) = \lambda _{1}^{{(i)}} C_{1} e^{{\lambda _{1}^{{(i)}} (t - t_{k} )}} + \lambda _{2}^{{(i)}} C_{2} e^{{\lambda _{2}^{{(i)}} (t - t_{k} )}} \\ & - A^{{(i)}} \Omega \sin \Omega t + B^{{(i)}} \Omega \cos \Omega t, \\ \end{aligned} $$
    (A.2)

    where

    $$ \begin{aligned} \lambda _{1}^{{(i)}} =\, & \tfrac{1}{2}( - \delta ^{{(i)}} + \sqrt \Delta ),{\text{ }}\lambda _{2}^{{(i)}} = \tfrac{1}{2}( - \delta ^{{(i)}} - \sqrt \Delta ); \\ A^{{(i)}} =\, & \frac{{Q_{0}^{{(i)}} (\alpha ^{{(i)}} - \Omega ^{2} )}}{{(\delta ^{{(i)}} \Omega )^{2} + (\alpha ^{{(i)}} - \Omega ^{2} )^{2} }},{\text{ }}B^{{(i)}} = \frac{{Q_{0}^{{(i)}} \delta ^{{(i)}} \Omega }}{{(\delta ^{{(i)}} \Omega )^{2} + (\alpha ^{{(i)}} - \Omega ^{2} )^{2} }}; \\ C_{1} =\, & \frac{1}{{2\sqrt \Delta }}[y_{k} + A^{{(i)}} \Omega \sin \Omega t_{k} - B^{{(i)}} \Omega \cos \Omega t_{k} \\ & \, - \lambda _{2}^{{(i)}} (x_{k} - A^{{(i)}} \cos \Omega t_{k} - B^{{(i)}} \sin \Omega t_{k} - \tfrac{1}{{\alpha ^{{(i)}} }}Q^{{(i)}} )], \\ C_{2} =\, & \frac{1}{{2\sqrt \Delta }}[\lambda _{1}^{{(i)}} (x_{k} - A^{{(i)}} \cos \Omega t_{k} - B^{{(i)}} \sin \Omega t_{k} - \tfrac{1}{{\alpha ^{{(i)}} }}Q^{{(i)}} ) \\ & \, - (y_{k} + A^{{(i)}} \Omega \sin \Omega t_{k} - B^{{(i)}} \Omega \cos \Omega t_{k} )]. \\ \end{aligned}\\ $$
    (A.3)
  • Case II: \(\Delta = (\delta^{(i)} )^{2} - 4\alpha^{(i)} = 0\)

    $$ \begin{aligned} x^{{(i)}} (t) =\, & [C_{1} (t - t_{k} ) + C_{2} ]e^{{\lambda _{1}^{{(i)}} (t - t_{k} )}} + A^{{(i)}} \cos \Omega t \\ & + B^{{(i)}} \sin \Omega t + \tfrac{1}{{\alpha ^{{(i)}} }}Q^{{(i)}} , \\ y^{{(i)}} (t) =\, & [\lambda _{1}^{{(i)}} C_{1} (t - t_{k} ) + \lambda _{1}^{{(i)}} C_{2} + C_{1} ]e^{{\lambda _{1}^{{(i)}} (t - t_{k} )}} \\ & - A^{{(i)}} \Omega \sin \Omega t + B^{{(i)}} \Omega \cos \Omega t, \\ \end{aligned} $$
    (A.4)

    where

    $$ \begin{aligned} \lambda _{1}^{{(i)}} =\, & \lambda _{2}^{{(i)}} = - \tfrac{1}{2}\delta ^{{(i)}} , \\ C_{1} =\, & y_{k} + A^{{(i)}} \Omega \sin \Omega t_{k} - B^{{(i)}} \Omega \cos \Omega t_{k} \\ & - \lambda _{1}^{{(i)}} [x_{k} - A^{{(i)}} \cos \Omega t_{k} - B^{{(i)}} \sin \Omega t_{k} - \tfrac{1}{{\alpha ^{{(i)}} }}Q^{{(i)}} ], \\ C_{2} =\, & x_{k} - A^{{(i)}} \cos \Omega t_{k} - B^{{(i)}} \sin \Omega t_{k} - \tfrac{1}{{\alpha ^{{(i)}} }}Q^{{(i)}} . \\ \end{aligned} $$
    (A.5)
  • Case III: \(\Delta = \delta^{(i)2} - 4\alpha^{(i)} < 0\)

    $$ \begin{aligned} x^{{(i)}} (t) =\, & e^{{ - \delta ^{{(i)}} (t - t_{k} )/2}} [C_{1} \cos \omega _{d} (t {-} t_{k} ) {+} C_{2} \sin \omega _{d} (t {-} t_{k} )] \\ & + A^{{(i)}} \cos \Omega t + B^{{(i)}} \sin \Omega t + \tfrac{1}{{\alpha ^{{(i)}} }}Q^{{(i)}} , \\ y^{{(i)}} (t) = \,& e^{{ - \delta ^{{(i)}} (t - t_{k} )/2}} [( - \tfrac{1}{2}\delta ^{{(i)}} C_{1} + C_{2} \omega _{d} )\cos \omega _{d} (t - t_{k} ) \\ & - (\tfrac{1}{2}\delta ^{{(i)}} C_{2} + C_{1} \sqrt \Delta )\sin \omega _{d} (t - t_{k} )] \\ & - A^{{(i)}} \Omega \sin \Omega t + B^{{(i)}} \Omega \cos \Omega t \\ \end{aligned} $$
    (A.6)

    where

    $$ \begin{aligned} & \omega_{d} =\, \sqrt {|\Delta |} , \\ & C_{1} = x_{k} - A^{(i)} \cos (\Omega t_{k} ) - B^{(i)} \sin (\Omega t_{k} ) - \tfrac{1}{{\alpha^{(i)} }}Q^{(i)} , \\ & C_{2} =\, \frac{1}{\sqrt \Delta }[y_{k} + A^{(i)} \Omega \sin \Omega t_{k} - B^{(i)} \Omega \cos \Omega t_{k} \, \\ & \quad \quad + \tfrac{1}{2}\delta^{(i)} (x_{k} - A^{(i)} \cos \Omega t_{k} - B^{(i)} \sin \Omega t_{k} - \tfrac{1}{{\alpha^{(i)} }}Q^{(i)} )]. \\ \end{aligned} $$
    (A.7)

The Jacobian matrix components are given as follows.

  • Case I: \(\Delta = (\delta^{(i)} )^{2} - 4\alpha^{(i)} > 0\)

    $$ \begin{aligned} \frac{{\partial g_{k1} }}{{\partial x_{k} }} =\, & \frac{{\partial C_{1} }}{{\partial x_{k} }}e^{{\lambda_{1} (t_{k + 1} - t_{k} )}} + \frac{{\partial C_{2} }}{{\partial x_{k} }}e^{{\lambda_{2} (t_{k + 1} - t_{k} )}} , \\ \frac{{\partial g_{k1} }}{{\partial y_{k} }} =\, & \frac{{\partial C_{1} }}{{\partial y_{k} }}e^{{\lambda_{1} (t_{k + 1} - t_{k} )}} + \frac{{\partial C_{2} }}{{\partial y_{k} }}e^{{\lambda_{2} (t_{k + 1} - t_{k} )}} , \\ \frac{{\partial g_{k1} }}{{\partial t_{k} }} =\, & [\frac{{\partial C_{1} }}{{\partial t_{k} }} - C_{1} \lambda_{1} ]e^{{\lambda_{1} (t_{k + 1} - t_{k} )}} \\ &\quad + [\frac{{\partial C_{2} }}{{\partial t_{k} }} - C_{2} \lambda_{2} ]e^{{\lambda_{2} (t_{k + 1} - t_{k} )}} . \\ \end{aligned} $$
    (A.8)
    $$ \begin{aligned} \frac{{\partial g_{{k2}} }}{{\partial x_{k} }} =\, & \lambda _{1} \frac{{\partial C_{1} }}{{\partial x_{k} }}e^{{\lambda _{1} (t_{{k + 1}} - t_{k} )}} + \lambda _{2} \frac{{\partial C_{2} }}{{\partial x_{k} }}e^{{\lambda _{2} (t_{{k + 1}} - t_{k} )}} , \\ \frac{{\partial g_{{k2}} }}{{\partial x_{k} }} =\, & \lambda _{1} \frac{{\partial C_{1} }}{{\partial x_{k} }}e^{{\lambda _{1} (t_{{k + 1}} - t_{k} )}} + \lambda _{2} \frac{{\partial C_{2} }}{{\partial x_{k} }}e^{{\lambda _{2} (t_{{k + 1}} - t_{k} )}} , \\ \frac{{\partial g_{{k2}} }}{{\partial t_{k} }} =\, & [ - \lambda _{1}^{2} C_{1} + \lambda _{1} \frac{{\partial C_{1} }}{{\partial t_{k} }}]e^{{\lambda _{1} (t_{{k + 1}} - t_{k} )}} \\ & + [ - \lambda _{2}^{2} C_{2} + \lambda _{2} \frac{{\partial C_{2} }}{{\partial t_{k} }}]e^{{\lambda _{2} (t_{{k + 1}} - t_{k} )}} \\ \end{aligned} $$
    (A.9)
    $$ \frac{{\partial h_{k} }}{{\partial x_{k} }} = \frac{{\partial h_{k} }}{{\partial y_{k} }} = \frac{{\partial h_{k} }}{{\partial t_{k} }} = 0; $$
    (A.10)
    $$ \begin{aligned} \frac{{\partial g_{{k1}} }}{{\partial x_{{k + 1}} }} =\, & - 1,\frac{{\partial g_{{k1}} }}{{\partial y_{{k + 1}} }} = 0,\frac{{\partial g_{{k2}} }}{{\partial x_{{k + 1}} }} = 0,\frac{{\partial g_{{k2}} }}{{\partial y_{{k + 1}} }} = - 1; \\ \frac{{\partial g_{{k1}} }}{{\partial t_{{k + 1}} }} =\, & \lambda _{1} C_{1} e^{{\lambda _{1} (t_{{k + 1}} - t_{k} )}} + \lambda _{2} C_{2} e^{{\lambda _{2} (t_{{k + 1}} - t_{k} )}} \\ & - A^{{(i)}} \Omega \sin \Omega t_{{k + 1}} + B^{{(i)}} \Omega \cos \Omega t_{{k + 1}} , \\ \frac{{\partial g_{{k2}} }}{{\partial t_{{k + 1}} }} = \,& \lambda _{1}^{2} C_{1} e^{{\lambda _{1} (t_{{k + 1}} - t_{k} )}} + \lambda _{2}^{2} C_{2} e^{{\lambda _{2} (t_{{k + 1}} - t_{k} )}} \\ & - A^{{(i)}} \Omega ^{2} \cos \Omega t_{{k + 1}} - B^{{(i)}} \Omega ^{2} \sin \Omega t_{{k + 1}} \\ \end{aligned} $$
    (A.11)
    $$ \frac{{\partial h_{k} }}{{\partial x_{k + 1} }} = \frac{2}{{a^{2} }}x_{k + 1} ,\;\frac{{\partial h_{k} }}{{\partial y_{k + 1} }} = - \frac{2}{{b^{2} }}y_{k + 1} ,\;\frac{{\partial h_{k} }}{{\partial t_{k + 1} }} = 0 $$
    (A.12)

    where

    $$ \begin{aligned} \frac{{\partial C_{1} }}{{\partial x_{k} }} =\, & \frac{{\lambda _{2} }}{{\lambda _{2} - \lambda _{1} }},\frac{{\partial C_{1} }}{{\partial y_{k} }} = \frac{1}{{\lambda _{1} - \lambda _{2} }}, \\ \frac{{\partial C_{1} }}{{\partial t_{k} }} =\, & \frac{1}{{2w_{d} }} [{(A^{{(i)}} \Omega ^{2} + \lambda _{2} B^{{(i)}} \Omega )\cos \Omega t_{k} } \\ & { + (B^{{(i)}} \Omega ^{2} - \lambda _{2} A^{{(i)}} \Omega )\sin \Omega t_{k} } ]; \\ \end{aligned} $$
    (A.13)
    $$ \begin{aligned} \frac{{\partial C_{2} }}{{\partial x_{k} }} =\, & \frac{{\lambda _{1} }}{{\lambda _{1} - \lambda _{2} }},{\text{ }}\frac{{\partial C_{2} }}{{\partial y_{k} }} = \frac{1}{{\lambda _{2} - \lambda _{1} }}, \\ \frac{{\partial C_{2} }}{{\partial t_{k} }} =\, & \frac{1}{{2w_{d} }} [ {(A^{{(i)}} \Omega ^{2} + \lambda _{1} B^{{(i)}} \Omega )\cos \Omega t_{k} } \\ & { + (B^{{(i)}} \Omega ^{2} - \lambda _{1} A^{{(i)}} \Omega )\sin \Omega t_{k} } ]. \\ \end{aligned} $$
    (A.14)
  • Case II: \(\Delta = (\delta^{(i)} )^{2} - 4\alpha^{(i)} = 0\)

    $$ \begin{aligned} \frac{{\partial g_{{k1}} }}{{\partial x_{k} }} =\, & [\frac{{\partial C_{1} }}{{\partial x_{k} }} + \frac{{\partial C_{2} }}{{\partial x_{k} }}(t_{{k + 1}} - t_{k} )]e^{{ - \tfrac{1}{2}\delta ^{{(i)}} (t_{{k + 1}} - t_{k} )}} , \\ \frac{{\partial g_{{k1}} }}{{\partial y_{k} }} =\, & [\frac{{\partial C_{2} }}{{\partial y_{k} }}(t_{{k + 1}} - t_{k} )]e^{{ - \tfrac{1}{2}\delta ^{{(i)}} (t_{{k + 1}} - t_{k} )}} , \\ \frac{{\partial g_{{k1}} }}{{\partial t_{k} }} =\, & \{ \tfrac{1}{2}\delta ^{{(i)}} [C_{1} + C_{2} (t_{{k + 1}} - t_{k} )] - C_{2} \\ & + \frac{{\partial C_{1} }}{{\partial t_{k} }} + \frac{{\partial C_{2} }}{{\partial t_{k} }}(t_{{k + 1}} - t_{k} )\} e^{{ - \tfrac{1}{2}\delta ^{{(i)}} (t_{{k + 1}} - t_{k} )}} \\ \end{aligned} $$
    (A.15)
    $$ \begin{aligned} \frac{{\partial g_{k2} }}{{\partial x_{k} }} =\, & [\frac{{\partial \mu_{1} }}{{\partial x_{k} }} + \frac{{\partial \mu_{2} }}{{\partial x_{k} }}(t_{k + 1} - t_{k} )]e^{{ - \tfrac{1}{2}\delta^{(i)} (t_{k + 1} - t_{k} )}} , \\ \frac{{\partial g_{k2} }}{{\partial y_{k} }} =\, & [\frac{{\partial \mu_{1} }}{{\partial y_{k} }} + \frac{{\partial \mu_{2} }}{{\partial y_{k} }}(t_{k + 1} - t_{k} )]e^{{ - \tfrac{1}{2}\delta^{(i)} (t_{k + 1} - t_{k} )}} , \\ \frac{{\partial g_{k2} }}{{\partial t_{k} }} =\, & \{ \tfrac{1}{2}\delta^{(i)} [\mu_{1} + \mu_{2} (t_{k + 1} - t_{k} )]\\ &- \mu_{2} + \frac{{\partial \mu_{1} }}{{\partial t_{k} }} + \frac{{\partial \mu_{2} }}{{\partial t_{k} }}(t_{k + 1} - t_{k} )\} e^{{ - \tfrac{1}{2}\delta^{(i)} (t_{k + 1} - t_{k} )}} \\ \end{aligned} $$
    (A.16)
    $$ \frac{{\partial h_{k} }}{{\partial x_{k} }} = \frac{{\partial h_{k} }}{{\partial y_{k} }} = \frac{{\partial h_{k} }}{{\partial t_{k} }} = 0, $$
    (A.17)
    $$ \frac{{\partial g_{k1} }}{{\partial x_{k + 1} }} = - 1,\frac{{\partial g_{k1} }}{{\partial y_{k + 1} }} = 0,\frac{{\partial g_{k2} }}{{\partial x_{k + 1} }} = 0,\frac{{\partial g_{k2} }}{{\partial y_{k + 1} }} = - 1, $$
    (A.18)
    $$ \begin{aligned} \frac{{\partial g_{{k1}} }}{{\partial t_{{k + 1}} }} =\, & - e^{{ - \tfrac{1}{2}\delta ^{{(i)}} (t_{{k + 1}} - t_{k} )}} \{ \tfrac{1}{2}\delta ^{{(i)}} [C_{1} + C_{2} (t_{{k + 1}} - t_{k} )] \\ & - C_{2} - A^{{(i)}} \Omega \sin \Omega t_{{k + 1}} + B^{{(i)}} \Omega \cos \Omega t_{{k + 1}} \} , \\ \frac{{\partial g_{{k2}} }}{{\partial t_{{k + 1}} }} =\, & - e^{{ - \tfrac{1}{2}\delta ^{{(i)}} (t_{{k + 1}} - t_{k} )}} \{ \tfrac{1}{2}\delta ^{{(i)}} [\mu _{1} + \mu _{2} (t_{{k + 1}} - t_{k} )] \\ & - \mu _{2} - A^{{(i)}} \Omega ^{2} \cos \Omega t_{{k + 1}} - B^{{(i)}} \Omega ^{2} \sin \Omega t_{{k + 1}} \} ; \\ \end{aligned} $$
    (A.19)
    $$ \frac{{\partial h_{k} }}{{\partial x_{k + 1} }} = \frac{2}{{a^{2} }}x_{k + 1} ,\frac{{\partial h_{k} }}{{\partial y_{k + 1} }} = - \frac{2}{{b^{2} }}y_{k + 1} ,\frac{{\partial h_{k} }}{{\partial t_{k + 1} }} = 0. $$
    (A.20)

    where

    $$ \begin{aligned} \frac{{\partial C_{1} }}{{\partial x_{k} }} = \,& - \lambda _{1} ,{\text{ }}\frac{{\partial C_{1} }}{{\partial y_{k} }} = 1,{\text{ }}\frac{{\partial C_{2} }}{{\partial x_{k} }} = 1, \\ {\text{ }}\frac{{\partial C_{2} }}{{\partial y_{k} }} =\, & 0,\frac{{\partial C_{1} }}{{\partial t_{k} }} = A^{{(i)}} \Omega \sin \Omega t_{k} - B^{{(i)}} \Omega \cos \Omega t_{k} , \\ \frac{{\partial C_{2} }}{{\partial t_{k} }} =\, & ( {A^{{(i)}} \Omega ^{2} - \tfrac{1}{2}\delta ^{{(i)}} B^{{(i)}} \Omega )\cos \Omega t_{k} } \\ & { + (B^{{(i)}} \Omega ^{2} + \tfrac{1}{2}\delta ^{{(i)}} A^{{(i)}} \Omega } )\sin \Omega t_{k} ; \\ \end{aligned} $$
    (A.21)
    $$ \mu_{1} = C_{2} - \tfrac{1}{2}\delta^{(i)} C_{1} ,\mu_{2} = - \tfrac{1}{2}\delta^{(i)} C_{2} ; $$
    (A.22)
    $$ \begin{aligned} \frac{{\partial \mu_{1} }}{{\partial x_{k} }} =\, & 1 + \tfrac{1}{2}\lambda_{1} \delta^{(i)} ,\frac{{\partial \mu_{1} }}{{\partial y_{k} }} = - \tfrac{1}{2}\delta^{(i)} , \, \frac{{\partial \mu_{2} }}{{\partial x_{k} }} = 1, \, \frac{{\partial \mu_{2} }}{{\partial y_{k} }} = 0, \\ \frac{{\partial \mu_{1} }}{{\partial t_{k} }} =\, & \frac{{\partial C_{2} }}{{\partial t_{k} }} - \tfrac{1}{2}\delta^{(i)} \frac{{\partial C_{1} }}{{\partial t_{k} }},\frac{{\partial \mu_{2} }}{{\partial t_{k} }} = - \tfrac{1}{2}\delta^{(i)} \frac{{\partial C_{2} }}{{\partial t_{k} }}. \\ \end{aligned} $$
    (A.23)
  • Case III: \(\Delta = (\delta^{(i)} )^{2} - 4\alpha^{(i)} < 0\)

    $$ \begin{aligned} \frac{{\partial g_{{k1}} }}{{\partial x_{k} }} =\, & e^{{ - \delta ^{{(i)}} (t_{{k + 1}} - t_{k} )/2}} [ {\frac{{\partial C_{1} }}{{\partial x_{k} }}\cos \omega _{d} (t_{{k + 1}} - t_{k} )} \\ & { + \frac{{\partial C_{2} }}{{\partial x_{k} }}\sin \omega _{d} (t_{{k + 1}} - t_{k} )}], \\ \frac{{\partial g_{{k1}} }}{{\partial y_{k} }} =\, & e^{{ - \delta ^{{(i)}} (t_{{k + 1}} - t_{k} )/2}} \frac{{\partial C_{2} }}{{\partial y_{k} }}\sin \omega _{d} (t_{{k + 1}} - t_{k} ), \\ \frac{{\partial g_{{k1}} }}{{\partial t_{k} }} =\, & e^{{ - \delta ^{{(i)}} (t_{{k + 1}} - t_{k} )/2}} [ {(\eta _{1} + \frac{{\partial C_{1} }}{{\partial t_{k} }})\cos \omega _{d} (t_{{k + 1}} - t_{k} )} \\ & { + (\eta _{2} + \frac{{\partial C_{2} }}{{\partial t_{k} }})\sin \omega _{d} (t_{{k + 1}} - t_{k} )}]; \\ \end{aligned} $$
    (A.24)
    $$ \begin{aligned} \frac{{\partial g_{{k2}} }}{{\partial x_{k} }} =\, & - e^{{ - \delta ^{{(i)}} (t_{{k + 1}} - t_{k} )/2}} [ {\frac{{\partial \eta _{1} }}{{\partial x_{k} }}\cos \omega _{d} (t_{{k + 1}} - t_{k} )} \\ & { + \frac{{\partial \eta _{2} }}{{\partial x_{k} }}\sin \omega _{d} (t_{{k + 1}} - t_{k} )]} ], \\ \frac{{\partial g_{{k2}} }}{{\partial y_{k} }} =\, & - e^{{ - \delta ^{{(i)}} (t_{{k + 1}} - t_{k} )/2}} [ {\frac{{\partial \eta _{1} }}{{\partial y_{k} }}\cos \omega _{d} (t_{{k + 1}} - t_{k} )} \\ & { + \frac{{\partial \eta _{2} }}{{\partial y_{k} }}\sin \omega _{d} (t_{{k + 1}} - t_{k} )} ], \\ \frac{{\partial g_{{k2}} }}{{\partial t_{k} }} =\, & - e^{{ - \delta ^{{(i)}} (t_{{k + 1}} - t_{k} )/2}} [ {(\gamma _{1} + \frac{{\partial \eta _{1} }}{{\partial t_{k} }})\cos \omega _{d} (t_{{k + 1}} - t_{k} )} \\ & { + (\gamma _{2} + \frac{{\partial \eta _{2} }}{{\partial t_{k} }})\sin \omega _{d} (t_{{k + 1}} - t_{k} )} ]; \\ \end{aligned} $$
    (A.25)
    $$ \frac{{\partial h_{k} }}{{\partial x_{k} }} = \frac{{\partial h_{k} }}{{\partial y_{k} }} = \frac{{\partial h_{k} }}{{\partial t_{k} }} = 0, $$
    (A.26)
    $$ \begin{aligned} \frac{{\partial g_{{k1}} }}{{\partial x_{{k + 1}} }} =\, & - 1,\;\frac{{\partial g_{{k1}} }}{{\partial y_{{k + 1}} }} = 0,\;\frac{{\partial g_{{k2}} }}{{\partial x_{{k + 1}} }} = 0,\;\frac{{\partial g_{{k2}} }}{{\partial y_{{k + 1}} }} = - 1; \\ \frac{{\partial g_{{k1}} }}{{\partial t_{{k + 1}} }} =\, & - e^{{ - \delta ^{{(i)}} (t_{{k + 1}} - t_{k} )/2}} \left[ {\eta _{1} \cos \omega _{d} (t_{{k + 1}} - t_{k} )} \right. \\ & \left. { + \eta _{2} \sin \omega _{d} (t_{{k + 1}} - t_{k} )} \right] - A^{{(i)}} \Omega \sin \Omega t_{{k + 1}} \\ &\quad + B^{{(i)}} \Omega \cos \Omega t_{{k + 1}} , \\ \frac{{\partial g_{{k2}} }}{{\partial t_{{k + 1}} }} =\, & e^{{ - \delta ^{{(i)}} (t_{{k + 1}} - t_{k} )/2}} \left[ {\gamma _{1} \cos \omega _{d} (t_{{k + 1}} - t_{k} )} \right. \\ & \left. { + \gamma _{2} \sin \omega _{d} (t_{{k + 1}} - t_{k} )} \right] - A^{{(i)}} \Omega ^{2} \cos \Omega t_{{k + 1}} \\ &\quad - B^{{(i)}} \Omega ^{2} \sin \Omega t_{{k + 1}} . \\ \end{aligned} $$
    (A.27)
    $$ \frac{{\partial h_{k} }}{{\partial x_{k + 1} }} = \frac{2}{{a^{2} }}x_{k + 1} ,\;\frac{{\partial h_{k} }}{{\partial y_{k + 1} }} = - \frac{2}{{b^{2} }}y_{k + 1} ,\;\frac{{\partial h_{k} }}{{\partial t_{k + 1} }} = 0 $$
    (A.28)

    where

    $$ \begin{aligned} \frac{{\partial C_{1} }}{{\partial x_{k} }} =\, & 1,{\text{ }}\frac{{\partial C_{1} }}{{\partial t_{k} }} = A^{{(i)}} \Omega \sin \Omega t_{k} - B^{{(i)}} \Omega \cos \Omega t_{k} , \\ \frac{{\partial C_{2} }}{{\partial x_{k} }} =\, & \frac{{\delta ^{{(i)}} }}{{2\omega _{d} }},{\text{ }}\frac{{\partial C_{2} }}{{\partial y_{k} }} = \frac{1}{{\omega _{d} }}; \\ \frac{{\partial C_{2} }}{{\partial t_{k} }} = & \frac{1}{{\omega _{d} }}\left[ {(A^{{(i)}} \Omega ^{2} - \tfrac{1}{2}B^{{(i)}} \delta ^{{(i)}} )\cos \Omega t_{k} } \right. \\ & \left. { + (B^{{(i)}} \Omega ^{2} + \tfrac{1}{2}A^{{(i)}} \delta ^{{(i)}} )\sin \Omega t_{k} } \right]; \\ \end{aligned} $$
    (A.29)
    $$ \eta_{1} = \tfrac{1}{2}\delta^{(i)} C_{1} - \omega_{d} C_{2} ,\eta_{2} = \tfrac{1}{2}\delta^{(i)} C_{2} + \omega_{d} C_{1} ; $$
    (A.30)
    $$ \begin{aligned} \frac{{\partial \eta _{1} }}{{\partial x_{k} }} =\, & 0,{\text{ }} \\ \frac{{\partial \eta _{2} }}{{\partial x_{k} }} =\, & \tfrac{1}{{4\omega _{d} }}(\delta ^{{(i)}} )^{2} + \omega _{d} ; \\ \frac{{\partial \eta _{1} }}{{\partial y_{k} }} =\, & - 1,{\text{ }}\frac{{\partial \eta _{2} }}{{\partial y_{k} }} = \tfrac{1}{{2\omega _{d} }}\delta ^{{(i)}} ; \\ \end{aligned} $$
    (A.31)
    $$ \begin{aligned} \frac{{\partial \eta _{1} }}{{\partial t_{k} }} =\, & [\tfrac{1}{2}\delta ^{{(i)}} B^{{(i)}} (1 - \Omega ) - A^{{(i)}} \Omega ^{2} ]\cos \Omega t_{k} \\ & - [\tfrac{1}{2}\delta ^{{(i)}} A^{{(i)}} (1 - \Omega ) + B^{{(i)}} \Omega ^{2} ]\sin \Omega t_{k} , \\ \frac{{\partial \eta _{2} }}{{\partial t_{k} }} = & [\tfrac{1}{{2\omega _{d} }}\delta ^{{(i)}} (A^{{(i)}} \Omega ^{2} - \tfrac{1}{2}\delta ^{{(i)}} B^{{(i)}} ) - \omega _{d} \Omega B^{{(i)}} ]\cos \Omega t_{k} \\ & + [\tfrac{1}{{2\omega _{d} }}\delta ^{{(i)}} (\Omega ^{2} B^{{(i)}} + \tfrac{1}{2}\delta ^{{(i)}} A^{{(i)}} ) \\ & + \omega _{d} \Omega A^{{(i)}} ]\sin \Omega t_{k} ; \\ \end{aligned} $$
    (A.32)
    $$ \gamma_{1} = \tfrac{1}{2}\delta^{(i)} \eta_{1} - w_{d} \eta_{2} ,\gamma_{2} = \tfrac{1}{2}\delta^{(i)} \eta_{2} + \omega_{d} \eta_{1} . $$
    (A.33)
  • Case IV: Sliding motion

    $$ \lambda_{0} = \frac{a}{b},C_{1} = \tfrac{1}{2}(x_{k} + \tfrac{1}{{\lambda_{0} }}y_{k} ),C_{2} = \tfrac{1}{2}(x_{k} - \tfrac{1}{{\lambda_{0} }}y_{k} ) $$
    (A.34)
    $$ \begin{aligned} \frac{{\partial g_{k1} }}{{\partial x_{k} }} =\, & \tfrac{1}{2}(C_{1} e^{{\lambda_{0} (t_{k + 1} - t_{k} )}} + C_{2} e^{{ - \lambda_{0} (t_{k + 1} - t_{k} )}} ), \\ \frac{{\partial g_{k1} }}{{\partial y_{k} }} =\, & \tfrac{1}{{2\lambda_{0} }}(e^{{\lambda_{0} (t_{k + 1} - t_{k} )}} - e^{{ - \lambda_{0} (t_{k + 1} - t_{k} )}} ), \\ \frac{{\partial g_{k1} }}{{\partial t_{k} }} =\, & \tfrac{1}{2}( - C_{1} e^{{\lambda_{0} (t_{k + 1} - t_{k} )}} + C_{2} e^{{ - \lambda_{0} (t_{k + 1} - t_{k} )}} ); \\ \end{aligned} $$
    (A.35)
    $$ \begin{aligned} \frac{{\partial g_{k2} }}{{\partial x_{k} }} =\, & \tfrac{1}{2}\lambda_{0} (e^{{\lambda_{0} (t_{k + 1} - t_{k} )}} - e^{{ - \lambda_{0} (t_{k + 1} - t_{k} )}} ), \\ \frac{{\partial g_{k2} }}{{\partial y_{k} }} =\, & \tfrac{1}{2}(e^{{\lambda_{0} (t_{k + 1} - t_{k} )}} + e^{{ - \lambda_{0} (t_{k + 1} - t_{k} )}} ), \\ \frac{{\partial g_{k2} }}{{\partial t_{k} }} =\, & \tfrac{1}{2}\lambda_{0} ( - C_{1} e^{{\lambda_{0} (t_{k + 1} - t_{k} )}} - C_{2} e^{{ - \lambda_{0} (t_{k + 1} - t_{k} )}} ); \\ \end{aligned} $$
    (A.36)
    $$ \begin{gathered} \frac{{\partial g_{k1} }}{{\partial x_{k + 1} }} = - 1,\;\frac{{\partial g_{k1} }}{{\partial y_{k + 1} }} = 0,\;\frac{{\partial g_{k1} }}{{\partial t_{k + 1} }} = - \frac{{\partial g_{k1} }}{{\partial t_{k} }}; \hfill \\ \frac{{\partial g_{k2} }}{{\partial x_{k + 1} }} = 0,\;\;\frac{{\partial g_{k2} }}{{\partial y_{k + 1} }} = - 1,\;\frac{{\partial g_{k2} }}{{\partial t_{k + 1} }} = - \frac{{\partial g_{k2} }}{{\partial t_{k} }}. \hfill \\ \end{gathered} $$
    (A.37)
    $$ \begin{aligned} \frac{{\partial h_{k} }}{{\partial x_{k} }} =\, & \frac{{\partial h_{k} }}{{\partial y_{k} }} = \frac{{\partial h_{k} }}{{\partial t_{k} }} = 0, \\ {\text{ }}\frac{{\partial h_{k} }}{{\partial x_{{k + 1}} }} =\, & ( {\frac{{\alpha ^{{(i)}} a}}{b} + \frac{b}{a}} )\frac{{y_{{k + 1}}^{2} }}{{\sqrt {y_{{k + 1}}^{2} + b^{2} } }}, \\ \frac{{\partial h_{k} }}{{\partial t_{{k + 1}} }} =\, & \frac{{\delta ^{{(i)}} ay_{{k + 1}} }}{{b\sqrt {y_{{k + 1}}^{2} + b^{2} } }}, \\ \frac{{\partial h_{k} }}{{\partial y_{{k + 1}} }} =\, & \frac{a}{b}\frac{{y_{{k + 1}}^{2} + b^{2} - 2y_{{k + 1}} }}{{(y_{{k + 1}}^{2} + b^{2} )^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}}} }} [(\alpha ^{{(i)}} + \frac{{b^{2} }}{{a^{2} }})x_{{k + 1}} \\ &\quad + \delta ^{{(i)}} y_{{k + 1}} - Q^{{(i)}} \cos \Omega t_{{k + 1}} - Q_{0}^{{(i)}} ] \\ &\quad + \frac{{ay_{{k + 1}} }}{{b\sqrt {y_{{k + 1}}^{2} + b^{2} } }}\delta ^{{(i)}} . \\ \end{aligned} $$
    (A.38)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, A.C.J., Liu, C. Sequential symmetric periodic motions in a symmetric discontinuous dynamical system. Int. J. Dynam. Control 10, 1301–1321 (2022). https://doi.org/10.1007/s40435-021-00888-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-021-00888-z

Keywords

Navigation