Log in

Analytical periodic motions in a discontinuous system with a switching hyperbola

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, studied are periodic motions in a discontinuous system with three vector fields switching through two branches of a hyperbola. The switchability conditions of flows at the discontinuous boundaries are presented through G-functions. Such conditions are presented for passable motions and grazing motions at the boundary with sliding motions on the boundary. With such analytical conditions, periodic motions with specific map** structures are analytically predicted, and the corresponding stability and bifurcations are presented through eigenvalue analysis. Numerical illustrations of periodic motions are carried out, and the corresponding G-functions are presented for illustration of motion switchability at the hyperbolic boundaries. The discontinuity of periodic motions is shown in phase trajectories. This study tells the complex motions can be obtained through a few individual systems with arbitrary switching boundaries, and the corresponding discontinuous dynamics can be discussed for dynamical system design and control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Den Hartog JP (1931) Forced vibrations with combined Coulomb and viscous friction. Trans ASME 53:107–115

    MATH  Google Scholar 

  2. Levitan ES (1960) Forced oscillation of a spring-mass system having combined Coulomb and viscous dam**. J Acoust Soc Am 32:1265–1269

    Article  MathSciNet  Google Scholar 

  3. Filippov AF (1964) Differential equations with discontinuous right-hand side. Am Math Soc Trans Ser 42(2):199–231

    MATH  Google Scholar 

  4. Filippov AF (1988) Differential equations with discontinuous righthand sides. Kluwer, Dordrecht

    Book  Google Scholar 

  5. Aizerman MA, Pyatnitsky ES (1974) Fundamentals of the theory of discontinuous systems, series 1. Autom Remote Control 35:1066–1079

    Google Scholar 

  6. Aizerman MA, Pyatnitsky ES (1974) Fundamentals of the theory of discontinuous systems, series 2. Autom Remote Control 35:1241–1262

    Google Scholar 

  7. Utkin V (1977) Variable structure systems with sliding modes. IEEE Trans Autom Control 22(2):212–222

    Article  MathSciNet  Google Scholar 

  8. Bazhenov VA, Lizunov PP, Pogorelova OS, Postnikova TG, Otrashevskaia VV (2015) Stability and bifurcations analysis for 2-DOF vibro-impact system by parameter continuation method. Part I: loading curve. J Appl Nonlinear Dyn 4(4):357–370

    Article  Google Scholar 

  9. Bazhenov VV, Pogorelova OS, Postnikova TG (2019) Breakup of closed curve-quasiperiodic route to chaos in vibro-impact system. Discontin Nonlinearity Complex 8(3):299–311

    Article  Google Scholar 

  10. Akhmet MU, Kıvılcım A (2018) van der Pol oscillators generated from grazing dynamics. Discontin Nonlinearity Complex 7(3):259–274

    Article  Google Scholar 

  11. Luo ACJ (2005) A theory for non-smooth dynamical systems on connectable domains. Commun Nonlinear Sci Numer Simul 10:1–55

    Article  MathSciNet  Google Scholar 

  12. Luo ACJ, Gegg BC (2006) Stick and non-stick periodic motions in periodically forced oscillators with dry friction. J Sound Vib 291:132–168

    Article  MathSciNet  Google Scholar 

  13. Luo ACJ, Gegg BC (2006) Periodic motions in a periodically forced oscillator moving on an oscillating belt with dry friction. ASME J Comput Nonlinear Dyn 1:132–168

    MATH  Google Scholar 

  14. Luo ACJ (2008) A theory for flow switchability in discontinuous dynamical systems. Nonlinear Anal Hybrid Syst 4:1030–1061

    Article  MathSciNet  Google Scholar 

  15. Luo ACJ, Rapp BM (2009) Flow switchability and periodic motions in a periodically forced discontinuous dynamical system. Nonlinear Anal Real-World Appl 10(5):3028–3044

    Article  MathSciNet  Google Scholar 

  16. Luo ACJ (2009) Discontinuous dynamical systems on time-varying domains. HEP/Springer, Bei**g/Berlin

    Book  Google Scholar 

  17. Luo ACJ, Rapp BM (2010) On motions and switchability in a periodically forced discontinuous system with a parabolic boundary. Nonlinear Anal Real-World Appl 11(14):2624–2633

    Article  MathSciNet  Google Scholar 

  18. Luo ACJ (2012) Discontinuous dynamical systems. HEP/Springer, Bei**g/Berlin

    Book  Google Scholar 

  19. Huang JZ, Luo ACJ (2017) Complex dynamics of bouncing motions on boundaries and corners in a discontinuous dynamical system. ASME J Comput Nonlinear Dyn 12(6):061014

    Article  Google Scholar 

  20. Tang X, Fu X, Sun X (2019) Periodic motion for an oblique impact system with single degree of freedom. J Vib Test Syst Dyn 3(3):71–89

    Google Scholar 

  21. Tang X, Fu X, Sun X (2020) The dynamical behavior of a two degrees of freedom oblique impact system. Discontin Nonlinearity Complex 9(1):117–139

    Article  Google Scholar 

  22. Li L, Luo ACJ (2016) Periodic orbits and bifurcations in discontinuous systems with a hyperbolic boundary. Int J Dyn Control 5:513–529

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert C. J. Luo.

Appendix

Appendix

Consider a linear oscillator in domain \( \Omega_{\alpha } \)

$$ \ddot{x}^{(i)} + \delta^{(i)} \dot{x}^{(i)} + \alpha^{(i)} x^{(i)} = Q^{(i)} + Q_{0}^{(i)} \cos \Omega t. $$
(51)

With the initial condition \( (x_{k} ,\dot{x}_{k} ,t_{k} ) \), the solutions to Eq. (51) are presented as follows. Let \( {\mathbf{x}}^{(i)} = (x^{(i)} ,\dot{x}^{(i)} )^{\text{T}} = (x^{(i)} ,y^{(i)} )^{\text{T}} \).

Case I: \( \Delta = \delta^{(i)2} - 4\alpha^{(i)} > 0 \)

$$ \begin{aligned} x^{(i)} (t) & = C_{1}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} )e^{{\lambda_{1}^{(i)} (t - t_{k} )}} + C_{2}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} )e^{{\lambda_{2}^{(i)} (t - t_{k} )}} \\ & \;\; + A^{(i)} \cos \Omega t + B^{(i)} \sin \Omega t + \tfrac{1}{{\alpha^{(i)} }}Q^{(i)} , \\ \end{aligned} $$
(52)
$$ \begin{aligned} y^{(i)} (t) & = \lambda_{1}^{(i)} C_{1}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} )e^{{\lambda_{1}^{(i)} (t^{(i)} - t_{k} )}} \\ & \;\; + \lambda_{2}^{(i)} C_{2}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} )e^{{\lambda_{2}^{(i)} (t^{(i)} - t_{k} )}} \\ & \;\; - A^{(i)} \Omega \sin \Omega t + B^{(i)} \Omega \cos \Omega t \\ \end{aligned} $$
(53)

where

$$ \begin{aligned} \lambda_{1}^{(i)} & = \tfrac{1}{2}( - \delta^{(i)} + \sqrt \Delta ),\lambda_{2}^{(i)} = \tfrac{1}{2}( - \delta^{(i)} - \sqrt \Delta ); \\ A^{(i)} & = \frac{{Q_{0}^{(i)} (\alpha^{(i)} - \Omega^{2} )}}{{(\delta^{(i)} \Omega )^{2} + (\alpha^{(i)} - \Omega^{2} )^{2} }}, \\ B^{(i)} & = \frac{{Q_{0}^{(i)} \delta^{(i)} \Omega }}{{(\delta^{(i)} \Omega )^{2} + (\alpha^{(i)} - \Omega^{2} )^{2} }}; \\ C_{1}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} ) & = \frac{1}{\sqrt \Delta }[y_{k}^{(i)} - \lambda_{2}^{(i)} x_{k}^{(i)} + \lambda_{2}^{(i)} \tfrac{1}{{\alpha^{(i)} }}Q^{(i)} \\ & \;\; + (\lambda_{2}^{(i)} A^{(i)} - B^{(i)} \Omega )\cos \Omega t_{k} \\ & \;\; + (\lambda_{2}^{(i)} B^{(i)} + A^{(i)} \Omega )\sin \Omega t_{k} ], \\ C_{2}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} ) & = \frac{1}{\sqrt \Delta }[\lambda_{1}^{(i)} x_{k}^{(i)} - y_{k}^{(i)} - \lambda_{1}^{(i)} \tfrac{1}{{\alpha^{(i)} }}Q^{(i)} \\ & \;\; - (\lambda_{1}^{(i)} A^{(i)} - B^{(i)} \Omega )\cos \Omega t_{k} \\ & \;\; - (\lambda_{1}^{(i)} B^{(i)} + A^{(i)} \Omega )\sin \Omega t_{k} ]. \\ \end{aligned} $$
(54)

Case II: \( \Delta = \delta^{(i)2} - 4\alpha^{(i)} = 0 \)

$$ \begin{aligned} x^{(i)} (t) & = [C_{1}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} )(t^{(i)} - t_{k} ) + C_{2}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} )]e^{{\lambda_{1}^{(i)} (t^{(i)} - t_{k} )}} \\ & \;\; + A^{(i)} \cos \Omega t + B^{(i)} \sin \Omega t + \tfrac{1}{{\alpha^{(i)} }}Q^{(i)} , \\ \end{aligned} $$
(55)
$$ \begin{aligned} \dot{x}^{(i)} (t) & = \left[ {\lambda_{1}^{(i)} C_{1}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} )(t^{(i)} - t_{k} )} \right. \\ & \;\;\left. { + \lambda_{1}^{(i)} C_{2}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} ) + C_{1}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} )} \right]e^{{\lambda_{1}^{(i)} (t^{(i)} - t_{k} )}} \\ & \;\; - A^{(i)} \Omega \sin \Omega t + B^{(i)} \Omega \cos \Omega t \\ \end{aligned} $$
(56)

where

$$ \begin{aligned} \lambda_{1}^{(i)} & = \lambda_{2}^{(i)} = - \tfrac{1}{2}\delta^{(i)} ; \\ C_{1}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} ) & = y_{k}^{(i)} - \lambda_{1}^{(i)} x_{k}^{(i)} + \lambda_{1}^{(i)} \tfrac{1}{{\alpha^{(i)} }}Q^{(i)} \\ & \;\; + (\lambda_{1}^{(i)} B^{(i)} + A^{(i)} \Omega )\sin \Omega t_{k} \\ & \;\; + (\lambda_{1}^{(i)} A^{(i)} - B^{(i)} \Omega )\cos \Omega t_{k} ], \\ C_{2}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} ) & = x_{k} - A^{(i)} \cos \Omega t_{k} - B^{(i)} \sin \Omega t_{k} - \tfrac{1}{{\alpha^{(i)} }}Q^{(i)} . \\ \end{aligned} $$
(57)

Case III: \( \Delta = \delta^{(i)2} - 4\alpha^{(i)} < 0 \)

$$ \begin{aligned} x^{(i)} (t) & = e^{{ - \lambda^{(i)} (t^{(i)} - t_{k} )}} \{ C_{1}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} )\cos [\omega_{d}^{(i)} (t - t_{k} )] \\ & \;\; + C_{2}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} )\sin [\omega_{d}^{(i)} (t - t_{k} )]\} \\ & \;\; + A^{(i)} \cos \Omega t + B^{(i)} \sin \Omega t + \tfrac{1}{{\alpha^{(i)} }}Q^{(i)} , \\ \end{aligned} $$
(58)
$$ \begin{aligned} y^{(i)} (t) & = e^{{ - \lambda^{(i)} (t^{(i)} - t_{k} )}} \{ [ - \lambda^{(i)} C_{1}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} ) \\ & \;\; + \omega_{d}^{(i)} C_{2}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} )]\cos [\omega_{d}^{(i)} (t^{(i)} - t_{k} )] \\ & \;\; - [\lambda^{(i)} C_{2}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} ) + \omega_{d}^{(i)} C_{1}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} )] \\ & \;\; \times \sin [\omega_{d}^{(i)} (t^{(i)} - t_{k} )]\} \\ & \;\; - A^{(i)} \Omega \sin \Omega t + B^{(i)} \Omega \cos \Omega t \\ \end{aligned} $$
(59)

where

$$ \begin{aligned} \lambda^{(i)} & = \tfrac{1}{2}\delta^{(i)} ,\omega_{d}^{(i)} = \tfrac{1}{2}\sqrt { - \Delta } ; \\ C_{1}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} ) & = x_{k} - A^{(i)} \cos \Omega t_{k} - B^{(i)} \sin \Omega t_{k} - \tfrac{1}{{\alpha^{(i)} }}Q^{(i)} ; \\ C_{2}^{(i)} ({\mathbf{x}}_{k}^{(i)} ,t_{k} ) & = \frac{1}{{\omega_{d}^{(i)} }}[y_{k} + \lambda^{(i)} x_{k} - \lambda^{(i)} \tfrac{1}{{\alpha^{(i)} }}Q^{(i)} \\ & \;\; + (A^{(i)} \Omega - \lambda^{(i)} B^{(i)} )\sin \Omega t_{k} \\ & \;\; - (B^{(i)} \Omega + \lambda^{(i)} A^{(i)} )\cos \Omega t_{k} ]. \\ \end{aligned} $$
(60)

The dynamic system on the hyperbolic boundary is

$$ {\dot{\mathbf{x}}}^{(0)} = \left( {\begin{array}{*{20}c} {y^{(0)} } \\ {\lambda_{0}^{2} x^{(0)} } \\ \end{array} } \right) $$
(61)

where

$$ \lambda_{0} = \tfrac{b}{a},\;{\mathbf{x}}^{(0)} = (x,y)^{\text{T}} \in \partial \Omega_{12} \cup \partial \Omega_{23} . $$
(62)

The corresponding solution is

$$ x^{(0)} (t) = C_{1} ({\mathbf{x}}_{k}^{(0)} ,t_{k} )e^{{\lambda_{0} (t - t_{k} )}} + C_{2} ({\mathbf{x}}_{k}^{(0)} ,t_{k} )e^{{ - \lambda_{0} (t - t_{k} )}} , $$
(63)
$$ \begin{aligned} y^{(0)} (t) & = \lambda_{0} \left[ {C_{1}^{(0)} ({\mathbf{x}}_{k}^{(0)} ,t_{k} )e^{{\lambda_{0} (t - t_{k} )}} } \right. \\ & \;\;\left. { - C_{2}^{(0)} ({\mathbf{x}}_{k}^{(0)} ,t_{k} )e^{{ - \lambda_{0} (t - t_{k} )}} } \right] \\ \end{aligned} $$
(64)

where

$$ \begin{aligned} & C_{1}^{(0)} ({\mathbf{x}}_{k}^{(0)} ,t_{k} ) = \frac{1}{{2\lambda_{0} }}(\lambda_{0} x_{k}^{(0)} + y_{k}^{(0)} ), \\ & C_{2}^{(0)} ({\mathbf{x}}_{k}^{(0)} ,t_{k} ) = \frac{1}{{2\lambda_{0} }}(\lambda_{0} x_{k}^{(0)} - y_{k}^{(0)} ). \\ \end{aligned} $$
(65)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, A.C.J., Liu, C. Analytical periodic motions in a discontinuous system with a switching hyperbola. Int. J. Dynam. Control 9, 379–391 (2021). https://doi.org/10.1007/s40435-020-00648-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-020-00648-5

Keywords

Navigation