Log in

A tau method based on Jacobi operational matrix for solving fractional telegraph equation with Riesz-space derivative

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we have presented an accurate and impressive spectral algorithm for solving fractional telegraph equation with Riesz-space derivative and Dirichlet boundary conditions. The proposed method is based on Jacobi tau spectral procedure together with the Jacobi operational matrices of Riemann–Liouville fractional integral and left- and right-sided Caputo fractional derivatives. Primarily, we implement the proposed algorithm in both temporal and spatial discretizations. This algorithm reduces the problem to a system of algebraic equations which considerably simplifies the problem. In addition, an error bound is established in the \(L^{\infty }\)-norm for the suggested spectral Jacobi tau method. Illustrative examples are included to demonstrate the validity and accuracy of the presented technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Atabakzadeh MH, Akrami MH, Erjaee GH (2013) Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations. Appl Math Model 37(20–21):8903–8911

    Article  MathSciNet  MATH  Google Scholar 

  • Atangana A (2015) On the stability and convergence of the time-fractional variable order telegraph equation. J Comput Phys 293:104–114

    Article  MathSciNet  MATH  Google Scholar 

  • Bhrawy AH, Zaky MA (2015) A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J Comput Phys 281:876–895

    Article  MathSciNet  MATH  Google Scholar 

  • Bhrawy AH, Zaky MA (2016a) Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations. Appl Math Model 40(2):832–845

    Article  MathSciNet  MATH  Google Scholar 

  • Bhrawy AH, Tharwat MM, Alghamdi MA (2014) A new operational matrix of fractional integration for shifted Jacobi polynomials. Bull Malays Math Sci Soc 37(4):983–995

    MathSciNet  MATH  Google Scholar 

  • Bhrawy AH, Taha TM, Machado JAT (2015) A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn 81(3):1023–1052

    Article  MathSciNet  MATH  Google Scholar 

  • Bhrawy AH, Zaky MA, Van Gorder RA (2016a) A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation. Numer Algorithms 71(1):151–180

    Article  MathSciNet  MATH  Google Scholar 

  • Bhrawy AH, Zaky MA, Machado JAT (2016b) Efficient Legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection–dispersion equation. J Vib Control 22(8):2053–2068

    Article  MathSciNet  MATH  Google Scholar 

  • Bhrawy AH, Zaky MA, Machado JAT (2017) Numerical solution of the two-sided space-time fractional telegraph equation via Chebyshev tau approximation. J Optim Theory Appl 174(1):321–341

    Article  MathSciNet  MATH  Google Scholar 

  • Borhanifar A, Sadri K (2014) Numerical solution for system of two dimensional integral equations by using Jacobi operational collation method. Sohag J Math 1(1):15–26

    Google Scholar 

  • Changpin L, Fanhai Z (2015) Numerical Methods for Fractional Calculus, vol 24. Chapman and Hall, CRC Press, Boca Raton

    MATH  Google Scholar 

  • Chen J, Liu F, Anh V (2008) Analytical solution for the time-fractional telegraph equation by the method of separating variables. J Math Anal Appl 338(2):1364–1377

    Article  MathSciNet  MATH  Google Scholar 

  • Chen S, Jiang X, Liu F, Turner I (2015) High order unconditionally stable difference schemes for the Riesz space-fractional telegraph equation. J Comput Appl Math 278:119–129

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Yousefi SA, Lotfi A (2011) The use of He’s variational iteration method for solving the telegraph and fractional telegraph equations. Int J Numer Methods Biomed Eng 27(2):219–231

    Article  MathSciNet  MATH  Google Scholar 

  • Deng WH (2008) Finite element method for the space and time fractional Fokker–Planck equation. SIAM J Numer Anal 47(1):204–226

    Article  MathSciNet  MATH  Google Scholar 

  • Doha EH (2004) On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomial. J Phys A Math Gen 37(3):657–675

    Article  MathSciNet  MATH  Google Scholar 

  • Doha EH, Bhrawy AH, Ezz-Eldien SS (2012) A new Jacobi operational matrix, an application for solving fractional differential equations. Appl Math Model 36(10):4931–4943

    Article  MathSciNet  MATH  Google Scholar 

  • Golbabai A, Nikan O, Nikazad T (2019) Numerical analysis of time fractional Black–Scholes European option pricing model arising in financial market. Comput Appl Math 38(4):173. https://doi.org/10.1007/s40314-019-0957-7

    Article  MathSciNet  MATH  Google Scholar 

  • Hosseini VR, Chen W, Avazzadeh Z (2014) Numerical solution of fractional telegraph equation by using radial basis functions. Eng Anal Bound Elem 38:31–39

    Article  MathSciNet  MATH  Google Scholar 

  • Huang F (2009) Analytical solution for the time fractional telegraph equation. J Appl Math 2009:890158

    Article  MathSciNet  MATH  Google Scholar 

  • Khan K, Dibilik J, Faraz N, Smarda Z (2012) An efficient new pertubative Laplace method for space-time fractional telegraph equations. Adv. Differ. Equ. https://doi.org/10.1186/1687-1847-2012-204

    Article  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and Applications of Fractional Differential Equations, vol 204. Elsevier, San Diego

    Book  MATH  Google Scholar 

  • Lotfi A, Dehghan M, Yousefi SA (2011) A numerical technique for solving fractional optimal control problems. Comput Math Appl 62(3):1055–1067

    Article  MathSciNet  MATH  Google Scholar 

  • Luke Y (1969) The special functions and their approximations, vol 2. Academic Press, New York

    MATH  Google Scholar 

  • Machado JAT, Kiryalova V, Mainardi F (2011) Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul 16(3):1140–1153

    Article  MathSciNet  MATH  Google Scholar 

  • Moaddya K, Momani S, Hashima I (2011) The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics. Comput Math Appl 61(4):1209–1216

    Article  MathSciNet  Google Scholar 

  • Momani S (2005) Analytic and approximate solutions of the space- and time-fractional telegraph equations. Appl Math Comput 170(2):1126–1134

    MathSciNet  MATH  Google Scholar 

  • Nikan O, Tenreiro Machado JA, Golbabai A, Nikazad T (2019a) Numerical investigation of the nonlinear modified anomalous diffusion process. Nonlinear Dyn 97(4):2757–2775

    Article  MATH  Google Scholar 

  • Nikan O, Tenreiro Machado JA, Golbabai A, Nikazad T (2019b) Numerical approach for modeling fractal mobile/immobile transport model in porous and fractured media. Int Commun Heat Mass Transf 111:104443. https://doi.org/10.1016/j.icheatmasstransfer.2019.104443

    Article  Google Scholar 

  • Nikan O, Golbabai A, Tenreiro Machado JA, Nikazad T (2020) Numerical solution of the fractional Rayleigh–Stokes model arising in a heated generalized second-grade fluid. Eng Comput. https://doi.org/10.1007/s00366-019-00913-y

    Article  MATH  Google Scholar 

  • Orsingher E, Beghin L (2004) Time-fractional telegraph equation and telegraph processes with Brownian time. Probab Theory Relat Fields 128(1):141–160

    Article  MathSciNet  MATH  Google Scholar 

  • Orsingher E, Zhao X (2003) The space-fractional telegraph equation and the related fractional telegraph process. Chin Ann Math 24(1):45–56

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional Differential Equations. Academic Press, San Diego

    MATH  Google Scholar 

  • Razzaghi M, Yousefi S (2005) Legendre wavelets method for the nonlinear Voltera–Fredholm integral equations. Math Comput Simul 70(1):1–8

    Article  MATH  Google Scholar 

  • Safdari H, Mesgarani H, Javidi M, Esmaeelzade Aghdam Y (2020) Convergence analysis of the space fractional-order diffusion equation based on the compact finite difference scheme. Comput Appl Math 39(2):1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Sweilam NH, Khader MM, Nagy AM (2011) Numerical solution of two-sided space-fractional wave equation using finite difference method. J Comput Appl Math 235(8):2832–2841

    Article  MathSciNet  MATH  Google Scholar 

  • Wei L, Dai H, Zhang D, Si Z (2014) Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation. Calcolo 51(1):175–192

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao Z, Li C (2012) Fractional difference/finite element approximations for the time-space fractional telegraph equation. Appl Math Comput 219(6):2975–2988

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaghoub Mahmoudi.

Additional information

Communicated by José Tenreiro Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonyadi, S., Mahmoudi, Y., Lakestani, M. et al. A tau method based on Jacobi operational matrix for solving fractional telegraph equation with Riesz-space derivative. Comp. Appl. Math. 39, 309 (2020). https://doi.org/10.1007/s40314-020-01363-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01363-9

Keywords

Navigation