Log in

Convergence analysis of the space fractional-order diffusion equation based on the compact finite difference scheme

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper develops a numerical method for approximating the space fractional diffusion equation in Caputo derivative sense. In this discretization process, firstly, the compact finite difference with convergence order \({\mathcal {O}}(\delta \tau ^{2})\) is used to obtain the semi-discrete in time derivative. Afterward, the spatial fractional derivative is discretized by using the Chebyshev collocation method of the third-kind. This collocation scheme is based on the operational matrix. In addition, time-discrete stability and convergence are theoretically proved in detail. We solve two examples by the proposed method and the obtained results are compared with other numerical methods. The numerical results show that our method is much more accurate than existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelkawy M, Lopes AM, Zaky M (2019) Shifted fractional Jacobi spectral algorithm for solving distributed order time-fractional reaction-diffusion equations. Comput Appl Math 38(2):81

    Article  MathSciNet  MATH  Google Scholar 

  • Azin H, Mohammadi F, Machado JT (2019) A piecewise spectral-collocation method for solving fractional Riccati differential equation in large domains. Comput Appl Math 38(3):96

    Article  MathSciNet  MATH  Google Scholar 

  • Bohaienko V (2019) A fast finite-difference algorithm for solving space-fractional filtration equation with a generalised Caputo derivative. Comput Appl Math 38(3):105

    Article  MathSciNet  MATH  Google Scholar 

  • Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods. Springer, Berlin

    Book  MATH  Google Scholar 

  • Caputo M (1967) Linear models of dissipation whose Q is almost frequency independent-II. Geophys J Int 13(5):529–539

    Article  Google Scholar 

  • Ervin VJ, Heuer N, Roop JP (2007) Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J Numer Anal 45(2):572–591

    Article  MathSciNet  MATH  Google Scholar 

  • Golbabai A, Nikan O (2019) A computational method based on the moving least-squares approach for pricing double barrier options in a time-fractional Black-Scholes model. Comput Econ 20:1–23

    Google Scholar 

  • Golbabai A, Nikan O, Nikazad T (2019a) Numerical analysis of time fractional Black-Scholes European option pricing model arising in financial market. Comput Appl Math 38(4):173

    Article  MathSciNet  MATH  Google Scholar 

  • Golbabai A, Nikan O, Nikazad T (2019b) Numerical investigation of the time fractional Mobile-immobile advection–dispersion model arising from solute transport in porous media. Int J Appl Comput Math 5(3):50

    Article  MathSciNet  MATH  Google Scholar 

  • Hashim I, Abdulaziz O, Momani S (2009) Homotopy analysis method for fractional IVPs. Commun Nonlinear Sci Numer Simul 14(3):674–684

    Article  MathSciNet  MATH  Google Scholar 

  • He JH (1998) Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput Methods Appl Mech Eng 167(1–2):57–68

    Article  MathSciNet  MATH  Google Scholar 

  • Henry BI, Wearne SL (2002) Existence of turing instabilities in a two-species fractional reaction–diffusion system. SIAM J Appl Math 62(3):870–887

    Article  MathSciNet  MATH  Google Scholar 

  • Inc M (2008) The approximate and exact solutions of the space-and time-fractional Burgers equations with initial conditions by variational iteration method. J Math Anal Appl 345(1):476–484

    Article  MathSciNet  MATH  Google Scholar 

  • Khader M (2011) On the numerical solutions for the fractional diffusion equation. Commun Nonlinear Sci Numer Simul 16(6):2535–2542

    Article  MathSciNet  MATH  Google Scholar 

  • Kilbas AAA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 204. Elsevier Science Limited, New York

    Book  MATH  Google Scholar 

  • Mason J (1993) Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms. J Comput Appl Math 49(1–3):169–178

    Article  MathSciNet  MATH  Google Scholar 

  • Mason JC, Handscomb DC (2002) Chebyshev polynomials. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection–dispersion flow equations. J Comput Appl Math 172(1):65–77

    Article  MathSciNet  MATH  Google Scholar 

  • Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    Article  MathSciNet  MATH  Google Scholar 

  • Moghaddam BP, Machado JT, Babaei A (2018) A computationally efficient method for tempered fractional differential equations with application. Comput Appl Math 37(3):3657–3671

    Article  MathSciNet  MATH  Google Scholar 

  • Nikan O, Machado JT, Golbabai A, Nikazad T (2019) Numerical investigation of the nonlinear modified anomalous diffusion process. Nonlinear Dyn 97(4):2757–2775

    Article  MATH  Google Scholar 

  • Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Elsevier, New York

    MATH  Google Scholar 

  • Ren L, Liu L (2019) A high-order compact difference method for time fractional Fokker–Planck equations with variable coefficients. Comput Appl Math 38(3):101

    Article  MathSciNet  MATH  Google Scholar 

  • Reyes-Melo E, Martinez-Vega J, Guerrero-Salazar C, Ortiz-Mendez U (2005) Application of fractional calculus to the modeling of dielectric relaxation phenomena in polymeric materials. J Appl Polym Sci 98(2):923–935

    Article  Google Scholar 

  • Saadatmandi A, Dehghan M (2011) A tau approach for solution of the space fractional diffusion equation. Comput Appl Math 62(3):1135–1142

    Article  MathSciNet  MATH  Google Scholar 

  • Sayevand K, Machado JT (2018) An accurate and cost-efficient numerical approach to analyze the initial and boundary value problems of fractional multi-order. Comput Appl Math 37(5):6582–6600

    Article  MathSciNet  MATH  Google Scholar 

  • Sousa E (2011) Numerical approximations for fractional diffusion equations via splines. Comput Appl Math 62(3):938–944

    Article  MathSciNet  MATH  Google Scholar 

  • Sweilam N, Nagy A, El-Sayed AA (2015) Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation. Chaos Solitons Fractals 73:141–147

    Article  MathSciNet  MATH  Google Scholar 

  • Tadjeran C, Meerschaert MM, Scheffler HP (2006) A second-order accurate numerical approximation for the fractional diffusion equation. J Comput Phys 213(1):205–213

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Safdari.

Additional information

Communicated by Agnieszka Malinowska.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safdari, H., Mesgarani, H., Javidi, M. et al. Convergence analysis of the space fractional-order diffusion equation based on the compact finite difference scheme. Comp. Appl. Math. 39, 62 (2020). https://doi.org/10.1007/s40314-020-1078-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-1078-z

Keywords

Mathematics Subject Classification

Navigation