Log in

Numerical investigation of the nonlinear modified anomalous diffusion process

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear modified anomalous sub-diffusion model characterizes processes that become less anomalous as time progresses by including a second fractional time derivative acting on the term of diffusion. This paper introduces a radial basis function-generated finite difference (RBF-FD) method for solving the governing problem. The Grünwald–Letnikov formula with first-order accuracy is implemented to discretize the problem in the time direction, and the spatial variable is discretized using the local RBF-FD method. The convergence and stability of the time discretization scheme are deduced in an appropriate Sobolev space. The data distribution pattern within the support domain is considered to have a constant number of points. The numerical results on regular and irregular domains show the efficiency and high accuracy of the method and confirm the theoretical prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Oldham, K.B., Spanier, J.: The Fractional Calculus, vol. 111 of Mathematics in Science and Engineering, vol. 111. Academic Press, New York (1974)

    MATH  Google Scholar 

  2. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  3. Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers, vol. 2. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  4. Milici, C., Drăgănescu, G., Machado, J.T.: Introduction to Fractional Differential Equations, vol. 25. Springer, Berlin (2019)

    Book  MATH  Google Scholar 

  5. Baleanu, D., Güvenç, Z.B., Machado, J.T., et al.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  6. Baleanu, D., Machado, J.A.T., Luo, A.C.: Fractional Dynamics and Control. Springer, Berlin (2011)

    Google Scholar 

  7. Machado, J.T., Mata, M.E.: A fractional perspective to the bond graph modelling of world economies. Nonlinear Dyn. 80(4), 1839 (2015)

    Article  MathSciNet  Google Scholar 

  8. Machado, J.T., Galhano, A.M.: Fractional order inductive phenomena based on the skin effect. Nonlinear Dyn. 68(1–2), 107 (2012)

    Article  MathSciNet  Google Scholar 

  9. Tarasov, V.E., Aifantis, E.C.: Non-standard extensions of gradient elasticity: fractional non-locality, memory and fractality. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 197 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tarasov, V.E., Aifantis, E.C.: On fractional and fractal formulations of gradient linear and nonlinear elasticity. Acta Mech. 230(6), 2043 (2019)

    Article  MathSciNet  Google Scholar 

  11. Sokolov, I.M., Klafter, J.: From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion. Chaos Interdiscip. J. Nonlinear Sci. 15(2), 026103 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brown, E.B., Wu, E.S., Zipfel, W., Webb, W.W.: Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. Biophys. J. 77(5), 2837 (1999)

    Article  Google Scholar 

  13. Feder, T.J., Brust-Mascher, I., Slattery, J.P., Baird, B., Webb, W.W.: Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys. J. 70(6), 2767 (1996)

    Article  Google Scholar 

  14. Ghosh, R.N.: Mobility and clustering of individual low-density lipoprotein receptor molecules on the surface of human skin fibroblasts (1992)

  15. Ghosh, R.N., Webb, W.W.: Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys. J. 66(5), 1301 (1994)

    Article  Google Scholar 

  16. Simson, R., Yang, B., Moore, S.E., Doherty, P., Walsh, F.S., Jacobson, K.A.: Structural mosaicism on the submicron scale in the plasma membrane. Biophys. J. 74(1), 297 (1998)

    Article  Google Scholar 

  17. Saxton, M.J.: Anomalous diffusion due to binding: a monte carlo study. Biophys. J. 70(3), 1250 (1996)

    Article  Google Scholar 

  18. Saxton, M.J.: Anomalous diffusion due to obstacles: a monte carlo study. Biophys. J. 66(2), 394 (1994)

    Article  Google Scholar 

  19. Saxton, M.J.: Anomalous subdiffusion in fluorescence photobleaching recovery: a monte carlo study. Biophys. J. 81(4), 2226 (2001)

    Article  Google Scholar 

  20. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, C.M., Liu, F., Anh, V.: A fourier method and an extrapolation technique for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. J. Comput. Appl. Math. 223(2), 777 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tan, W., Masuoka, T.: Stokes’ first problem for a second grade fluid in a porous half-space with heated boundary. Int. J. Non Linear Mech. 40(4), 515 (2005)

    Article  MATH  Google Scholar 

  23. Chechkin, A.V., Gorenflo, R., Sokolov, I.M., Gonchar, V.Y.: Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal. 6(3), 259 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Sokolov, I., Chechkin, A., Klafter, J.: Distributed-order fractional kinetics. Acta Phys. Pol. B 35, 1323 (2004)

    Google Scholar 

  25. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A Stat. Mech. Appl. 284(1–4), 376 (2000)

    Article  MathSciNet  Google Scholar 

  26. Mainardi, F., Raberto, M., Gorenflo, R., Scalas, E.: Fractional calculus and continuous-time finance ii: the waiting-time distribution. Phys. A Stat. Mech. Appl. 287(3–4), 468 (2000)

    Article  MATH  Google Scholar 

  27. Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Phys. A Stat. Mech. Appl. 314(1–4), 749 (2002)

    Article  MATH  Google Scholar 

  28. Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 231(1), 160 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, Q., Liu, F., Turner, I., Anh, V.: Finite element approximation for a modified anomalous subdiffusion equation. Appl. Math. Model. 35(8), 4103 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J. Comput. Phys. 240, 36 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Abbaszadeh, M., Mohebbi, A.: A fourth-order compact solution of the two-dimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term. Comput. Math. Appl. 66(8), 1345 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: Solution of two-dimensional modified anomalous fractional sub-diffusion equation via radial basis functions (RBF) meshless method. Eng. Anal. Bound. Elem. 38, 72 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, T., Wang, Y.M.: A compact lod method and its extrapolation for two-dimensional modified anomalous fractional sub-diffusion equations. Comput. Math. Appl. 71(1), 147 (2016)

    Article  MathSciNet  Google Scholar 

  34. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Legendre spectral element method for solving time fractional modified anomalous sub-diffusion equation. Appl. Math. Model. 40(5–6), 3635 (2016)

    Article  MathSciNet  Google Scholar 

  35. Li, Y., Wang, D.: Improved efficient difference method for the modified anomalous sub-diffusion equation with a nonlinear source term. Int. J. Comput. Math. 94(4), 821 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cao, X., Cao, X., Wen, L.: The implicit midpoint method for the modified anomalous sub-diffusion equation with a nonlinear source term. J. Comput. Appl. Math. 318, 199 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shivanian, E., Jafarabadi, A.: Time fractional modified anomalous sub-diffusion equation with a nonlinear source term through locally applied meshless radial point interpolation. Mod. Phys. Lett. B 32(22), 1850251 (2018)

    Article  MathSciNet  Google Scholar 

  38. Ghehsareh, H.R., Raei, M., Zaghian, A.: Numerical simulation of a modified anomalous diffusion process with nonlinear source term by a local weak form meshless method. Eng. Anal. Bound. Elem. 98, 64 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, G.R., Gu, Y.T.: An Introduction to Meshfree Methods and Their Programming. Springer, Berlin (2005)

    Google Scholar 

  40. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76(8), 1905 (1971)

    Article  Google Scholar 

  41. Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—i surface approximations and partial derivative estimates. Comput. Math. Appl. 19(8–9), 127 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  42. Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approximation 2, 11 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  43. Madych, W., Nelson, S.: Multivariate interpolation and conditionally positive definite functions. II. Math. Comput. 54(189), 211 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  44. Franke, C., Schaback, R.: Convergence order estimates of meshless collocation methods using radial basis functions. Adv. Comput. Math. 8(4), 381 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Golberg, M., Chen, C., Karur, S.: Improved multiquadric approximation for partial differential equations. Eng. Anal. Bound. Elem. 18(1), 9 (1996)

    Article  Google Scholar 

  46. Golbabai, A., Rabiei, H.: A meshfree method based on radial basis functions for the eigenvalues of transient Stokes equations. Eng. Anal. Bound. Elem. 36(11), 1555 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Golbabai, A., Nikpour, A.: Computing a numerical solution of two dimensional non-linear schrödinger equation on complexly shaped domains by RBF based differential quadrature method. J. Comput. Phys. 322, 586 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Golbabai, A., Nikpour, A.: Stability and convergence of radial basis function finite difference method for the numerical solution of the reaction–diffusion equations. Appl. Math. Comput. 271, 567 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Rashidinia, J., Rasoulizadeh, M.N.: Numerical methods based on radial basis function-generated finite difference (RBF-FD) for solution of GKdVB equation. Wave Motion 90, 152 (2019)

    Article  MathSciNet  Google Scholar 

  50. Golbabai, A., Safdari-Vaighani, A.: A meshless method for numerical solution of the coupled Schrödinger–Kdv equations. Computing 92(3), 225 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Golbabai, A., Safdari-Vaighani, A.: Collocation methods based on radial basis functions for the coupled Klein–Gordon–Schrodinger equations. Electron. Trans. Numer. Anal. 39, 22 (2012)

    MathSciNet  MATH  Google Scholar 

  52. Liu, Q., Gu, Y., Zhuang, P., Liu, F., Nie, Y.: An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 48(1), 1 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. Gu, Y., Zhuang, P., Liu, Q.: An advanced meshless method for time fractional diffusion equation. Int. J. Comput. Methods 8(04), 653 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein–Gordon equations. Eng. Anal. Bound. Elem. 50, 412 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Golbabai, A., Nikan, O.: Application of the RBF meshless approach for solving fractional order differential equations. J. Comput. Complex Appl. 1(2), 64 (2015)

    MATH  Google Scholar 

  56. Golbabai, A., Nikan, O.: A meshless method for numerical solution of fractional differential equations. CJMS 4(1), 1 (2015)

    MathSciNet  MATH  Google Scholar 

  57. Golbabai, A., Nikan, O., Tousi, J.R.: Note on using radial basis functions method for solving nonlinear integral equations. Commun. Numer. Anal. 2016(2), 81 (2016)

    Article  MathSciNet  Google Scholar 

  58. Golbabai, A., Mammadov, M., Seifollahi, S.: Solving a system of nonlinear integral equations by an RBF network. Comput. Math. Appl. 57(10), 1651 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. Assari, P., Dehghan, M.: A meshless local Galerkin method for solving Volterra integral equations deduced from nonlinear fractional differential equations using the moving least squares technique. Appl. Numer. Math. 143, 276 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  60. Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216(1), 264 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  61. Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection–diffusion equation. Appl. Math. Comput. 191(1), 12 (2007)

    MathSciNet  MATH  Google Scholar 

  62. Wendland, H.: Scattered Data Approximation, vol. 17. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  63. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations, vol. 12. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  64. Sarra, A., Kansa, E.J.: Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations. Adv. Comput. Mech. 2 (2009)

  65. Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19(8–9), 147 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  66. Tolstykh, A., Shirobokov, D.: On using radial basis functions in a “finite difference mode” with applications to elasticity problems. Comput. Mech. 33(1), 68 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  67. Shu, C., Ding, H., Yeo, K.: Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 192(7–8), 941 (2003)

    Article  MATH  Google Scholar 

  68. Wright, G.B., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212(1), 99 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  69. Cheney, E.W., Light, W.A.: A Course in Approximation Theory, vol. 101. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  70. Sarra, S.A.: A local radial basis function method for advection–diffusion–reaction equations on complexly shaped domains. Appl. Math. Comput. 218(19), 9853 (2012)

    MathSciNet  MATH  Google Scholar 

  71. Fasshauer, G.E.: Meshfree Approximation Methods with Matlab, vol. 6. World Scientific Publishing Company, Singapore (2007)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful to Associate Editor for managing the review process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Golbabai.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikan, O., Tenreiro Machado, J.A., Golbabai, A. et al. Numerical investigation of the nonlinear modified anomalous diffusion process. Nonlinear Dyn 97, 2757–2775 (2019). https://doi.org/10.1007/s11071-019-05160-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05160-w

Keywords

Mathematics Subject Classification

Navigation