Log in

Development of ultrasound-assisted dispersive liquid–liquid microextraction based on in situ magnetic deep eutectic solvent for determination of cefixime in biological samples by high-performance liquid chromatography

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this study, ultrasound-assisted dispersive liquid–liquid microextraction based on in situ magnetic deep eutectic solvent (UA-DLLME-IM-DES) was considered for the determination of cefixime drug in the biological samples by high-performance liquid chromatography. A deep eutectic solvent magnetized (MDES), [tetrabutylammonium bromide/decanoic acid][FeCl3], was prepared through an in situ combination of the deep eutectic solvent (DES) and FeCl3 in the sample solution. Ultrasonication was performed to increase the generation speed of the magnetic DES in the solution and enhance the mass transfer of the analyte into the magnetic deep eutectic solvent. The characterization of the synthesized component was performed by Fourier transform infrared (FTIR) and vibrating sample magnetometry (VSM). Some factors influencing the extraction yield were assessed. Based on following the optimization, the calibration curve for the analyte was in the ranges of 2–1000 µg L−1, with a correlation coefficient higher than 0.9954. The limits of detection (LODs) and limits of quantification (LOQs) were 0.5 and 1.6 µg L−1 in real samples, respectively. The intra-day and inter-day precision was in the range of 33–3.9% and 4.5–5.2%, respectively. The extraction recoveries and enrichment factors of the analyte were acquired to be in the range of 92.1–93.8% and 125, respectively. Ultimately, the method was handled to extract cefixime drug in wastewater, human urine, and plasma samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Eskandari, M. Amirzehni, H. Asadollahzadeha, P. Alizadeh Eslami, New J. Chem. 41, 7186 (2017)

    Article  CAS  Google Scholar 

  2. C.C. Knapp, J. Sierra-Madero, Agents Chemother. 32, 1896 (1988)

    Article  CAS  Google Scholar 

  3. K. Kalkhanday, V. Jaiswal, R.B. Rastogi, D. Kumar, RSC Adv. 4, 30500 (2014)

    Article  Google Scholar 

  4. A. Dubala, J.S.K. Nagarajan, C.S. Vimal, R. George, J. Chromatogr. Sci. 53, 694 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. H.V. Scott, D. Pannowitz, J.W. Ketelbey, Med. J. 103, 25 (1990)

    CAS  Google Scholar 

  6. Z. Masoudyfar, S. Elhami, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 211(15), 234 (2019)

    Article  CAS  PubMed  Google Scholar 

  7. J. Hamilton-Miller, Chemotherapy 44, 24 (1998)

    Article  CAS  PubMed  Google Scholar 

  8. N. Karimian, M.B. Gholivand, Gh. Malekzadeh, J. Electroanal. Chem. 15, 64 (2016)

    Article  Google Scholar 

  9. C. Rush, M.W. Simon, Clin. Pediatr. (Phila) 42, 447 (2003)

    Article  PubMed  Google Scholar 

  10. Y.B. Wani, D.D. Patil, J. Saudi Chem. Soc. 21, 101 (2017)

    Article  Google Scholar 

  11. S.M. Ali-Ahmed, A.A. Elbashir, H.Y. Aboul-Enein, Arab. J. Chem. 8, 233 (2015)

    Article  CAS  Google Scholar 

  12. F. Ibrahim, M. Wahba, G. Magdy, Spectrochim. Acta A 188, 525 (2018)

    Article  CAS  Google Scholar 

  13. N. Bukhari, A.A. Al-Warthan, S.M. Wabaidur, Z.A. Othman, M. Javid, S. Haider, Sens. Lett. 8, 280 (2010)

    Article  CAS  Google Scholar 

  14. J. Shah, M.R. Jan, S. Shah, Inayatullah. Fluoresc. 21, 579 (2011J)

    Article  CAS  Google Scholar 

  15. A.F. Meng, X. Chen, Y. Zeng, D. Zhong, J. Chromatogr. B 819, 277 (2005)

    Article  CAS  Google Scholar 

  16. K. Abdi, M. Ezoddin, N. Pirooznia, Int. J. Environ. Anal. Chem. (2021). https://doi.org/10.1080/03067319.2021.1931853

    Article  Google Scholar 

  17. A. Mardani, M.R. Afshar Mogaddam, M.A. Farajzadeh, A. Mohebbi, M. Nemati, J. Sep. Sci. 43, 3674 (2020)

    Article  CAS  PubMed  Google Scholar 

  18. M. Ghane, A. Mohadesi, M. Ezoddin, M.A. Karimi, K. Abdi, Int. J. Environ. Anal. Chem. (2022). https://doi.org/10.1080/03067319.2022.2118585

    Article  Google Scholar 

  19. M. Ezoddin, M. Shojaie, K. Abdi, M.A. Karimi, Anal. Bioanal. Chem. 409, 2119 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. L. Adlnasab, M. Ezoddin, R.A. Shojae, F. Aryanasab, J. Chromatogr. B 109, 226 (2018)

    Article  Google Scholar 

  21. H. Piao, Y. Jiang, Z. Qin, P. Ma, Y. Sun, X. Wang, D. Song, Q. Fei, Talanta 222, 121527 (2021)

    Article  CAS  PubMed  Google Scholar 

  22. V. Ferrone, S. Genovese, M. Carlucci, M. Tiecco, R. Germani, F. Preziuso, F. Epifano, G. Carlucci, V.A. Taddeo, Food Chem. 245, 578 (2018)

    Article  CAS  PubMed  Google Scholar 

  23. X. **g, H.Y. Xue, X. Huang, H.Y. Li, X.W. Wang, L.Y. Jia, Chin. J. Anal. Chem. 49, e21065 (2021)

    Article  Google Scholar 

  24. M. Torbati, M.A. Farajzadeh, M.R. Afshar-Mogaddam, M. Torbati, J. Sep. Sci. 42, 1768 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. S.M. Yousefi, F. Shemirani, S.A. Ghorbanian, Chromatographia 81, 1201 (2018)

    Article  CAS  Google Scholar 

  26. G. Li, K. Ho Row, Trends Anal. Chem. 120, 115651 (2019)

    Article  CAS  Google Scholar 

  27. N. Lamei, M. Ezoddin, K. Abdi, Talanta 165, 176 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. M. Patzold, S. Siebenhaller, S. Kara, A. Liese, C. Syldatk, D. Holtmann, Trends Biotechnol. 37, 943 (2019)

    Article  PubMed  Google Scholar 

  29. X. **g, H. Xue, X. Sang, X. Wang, L. Jia, Food Chem. 391, 133220 (2022)

    Article  CAS  PubMed  Google Scholar 

  30. T. Khezeli, A. Daneshfar, Ultrason. Sonochem. 38, 590 (2017)

    Article  CAS  PubMed  Google Scholar 

  31. X. Wang, M. Liu, F. Peng, X. Ding, J. Chromatogr. A 1659, 462626 (2021)

    Article  CAS  PubMed  Google Scholar 

  32. F. Peng, M. Liu, X. Wang, X. Ding, Anal. Chim. Acta 1181, 338899 (2021)

    Article  CAS  PubMed  Google Scholar 

  33. P.M. Chełstowska, M. Kaykhaii, J.P. Wasylka, M. de la Guardia, Mol. Liq. 365, 120158 (2022)

    Article  Google Scholar 

  34. A. Moridi, S. Sabbaghi, J. Rasouli, K. Rasouli, S.A. Hashemi, W.H. Chiang, S.M. Mousavi, Water 15, 1819 (2023)

    Article  CAS  Google Scholar 

  35. H. Eskandari, M. Amirzehni, H. Asadollahzadeh, P. Alizadeh Eslami, New J. Chem. 41, 7186 (2017)

    Article  CAS  Google Scholar 

  36. H. Eskandari, M. Amirzehni, H. Asadollahzadeh, J. Hassanzadeh, P. Alizadeh Eslami, Sens. Actuators B Chem. 275, 145 (2018)

    Article  CAS  Google Scholar 

  37. S. Naghibi, H. Sahebi, Biomed. Chromatogr. 32, 32e4082 (2018)

    Article  Google Scholar 

  38. H. Eskandari, M. Amirzehni, E. Safavi, J. Hassanzadeh, Microchem. J. 169, 106537 (2021)

    Article  CAS  Google Scholar 

  39. E. Nakhostin Mortazavi, M. Zeeb, S.S. Homami, Anal. Lett. 57, 425 (2023). https://doi.org/10.1080/00032719.2023.2211183

    Article  CAS  Google Scholar 

  40. L. Adlnasab, H. Ebrahimzadeh, Y. Yamini, Microchim. Acta 179, 179 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All supports by the research council of Payame Noor University in this investigation are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Ezoddin.

Ethics declarations

Conflict of interest

It is announced by authors that there are no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi, K., Ezoddin, M., Behnamipour, S. et al. Development of ultrasound-assisted dispersive liquid–liquid microextraction based on in situ magnetic deep eutectic solvent for determination of cefixime in biological samples by high-performance liquid chromatography. J IRAN CHEM SOC 21, 1031–1039 (2024). https://doi.org/10.1007/s13738-024-02973-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-024-02973-4

Keywords

Navigation