Log in

Influence of yttrium and magnesium on the optical–magneto properties of ferrite nanoparticles and catalytic study for metal ligand synthesis

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

MgxY1−xFe2−xO4 (x = 0.2, 0.4, 0.6, 0.8, and 1.0) was synthesised using the sol–gel method and sintered for 2 h at 900 °C. The X-ray diffraction revels the firm increase in the lattice parameter (7.9–8.5 Å) with FCC crystal structure. The average particle size ranges from 30 to 20 nm. Field emission–scanning electron microscopy shows partially spherical morphology. The optical band gap energies calculated from ultraviolet–visible spectra of magnesium ferrites doped with yttrium ranged from 3.14 to 3.27 eV. The existence of all inserted elements in the MgxY1−xFe2−xO4 composition was confirmed by energy dispersive X-ray spectroscopy. The highly magnetic nanocrystals were examined, which showed an enhancement in magnetization and anisotropy constant. According to the BET analysis, the surface area ranges from 5.88 to 20 m2 g−1, the pore volume ranges from 0.02 to 0.09 cm3 g−1, and the pore diameter ranges from 4.6 to 6.6 nm. The development of a single-phase cubic spinel structure has been verified by X-ray diffraction and Raman spectroscopy. Five Raman modes that are active (A1g, Eg, and 3F2g) are visible in the Raman spectrum, which is consistent with the spinel structure. The catalyst MgxY1−xFe2-xO4 is used to convert p-carboxy n-phenyl maleimide into various metal complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All the data available in this manuscript.

References

  1. M.A. Ahmed, E. Ateia, S.I. El-Dek, Mater. Lett. 57, 4256 (2003). https://doi.org/10.1016/S0167-577X(03)00300-8

    Article  CAS  Google Scholar 

  2. Y.K. Fetisov, G. Srinivasan, Appl. Phys. Lett. 87, 103502 (2005). https://doi.org/10.1063/1.2037860

    Article  ADS  CAS  Google Scholar 

  3. M. Salavati-Niasari, A. Amiri, Appl. Catal. A 290, 46 (2005). https://doi.org/10.1016/j.apcata.2005.05.009

    Article  CAS  Google Scholar 

  4. G. Srinivasan, C.P. De Vreugd, M.I. Bichurin, V.M. Petrov, Appl. Phys. Lett. 86, 222506 (2005). https://doi.org/10.1063/1.1943491

    Article  ADS  CAS  Google Scholar 

  5. A.B. Ustinov, G. Srinivasan, Y.K. Fetisov, J. Appl. Phys. 103, 063901 (2008). https://doi.org/10.1063/1.2841200

    Article  ADS  CAS  Google Scholar 

  6. A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, Mater. Chem. Phys. 114, 505 (2009). https://doi.org/10.1016/j.matchemphys.2008.11.011

    Article  CAS  Google Scholar 

  7. A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, Mater Charact 60, 1328 (2009)

    Article  CAS  Google Scholar 

  8. M. Ishaque, M.U. Islam, M. Azhar-Khan, I.Z. Rahman, A. Genson, S. Hampshire, Phys. B Condens. Matter 405, 1532 (2010). https://doi.org/10.1016/j.physb.2009.12.035

    Article  ADS  CAS  Google Scholar 

  9. Y.-P. Fu, S.-H. Hu, Ceram. Int. 36, 1311 (2010). https://doi.org/10.1016/j.ceramint.2009.12.019

    Article  CAS  Google Scholar 

  10. M. Salavati-Niasari, D. Ghanbari, F. Davar, J. Alloys Compd. 492, 570 (2010). https://doi.org/10.1016/j.jallcom.2009.11.183

    Article  CAS  Google Scholar 

  11. M.A. Khan, M.U. Islam, M. Ishaque, I.Z. Rahman, Ceram. Int. 37, 2519 (2011). https://doi.org/10.1016/j.ceramint.2011.03.063

    Article  CAS  Google Scholar 

  12. M.K. Shobana, H. Kwon, H. Choe, J. Magn. Magn. Mater. 324, 2245 (2012). https://doi.org/10.1016/j.jmmm.2012.02.110

    Article  ADS  CAS  Google Scholar 

  13. N. Mir, M. Salavati-Niasari, Mater. Res. Bull. 48, 1660 (2013). https://doi.org/10.1016/j.materresbull.2013.01.006

    Article  CAS  Google Scholar 

  14. M.A. Hossain, S.S. Sikder, M.N.I. Khan, in 2015 2nd International Conference on Electrical Information and Communication Technologies (EICT) (2015). https://doi.org/10.1109/eict.2015.7391991

  15. M. Ishaque, M.A. Khan, I. Ali, H.M. Khan, M.A. Iqbal, M.U. Islam, M.F. Warsi, Ceram. Int. 41, 4028 (2015). https://doi.org/10.1016/j.ceramint.2014.11.093

    Article  CAS  Google Scholar 

  16. M. Ishaque, M.A. Khan, I. Ali, H.M. Khan, M.A. Iqbal, M.U. Islam, M.F. Warsi, J. Magn. Magn. Mater. 382, 98 (2015). https://doi.org/10.1016/j.jmmm.2015.01.057

    Article  ADS  CAS  Google Scholar 

  17. S. Jabbarzare, M. Abdellahi, H. Ghayour, A. Chami, S. Hejazian, J. Alloys Compd. 688, 1125 (2016). https://doi.org/10.1016/j.jallcom.2016.07.123

    Article  CAS  Google Scholar 

  18. S.E. Jacobo, P.G. Bercoff, Ceram. Int. 42, 7664 (2016). https://doi.org/10.1016/j.ceramint.2016.01.180

    Article  CAS  Google Scholar 

  19. T. Ahmad, I.H. Lone, S.G. Ansari, J. Ahmed, T. Ahamad, S.M. Alshehri, Mater. Des. 126, 331 (2017). https://doi.org/10.1016/j.matdes.2017.04.034

    Article  CAS  Google Scholar 

  20. M. AsifIqbal, M.U. Islam, I. Ali, M.A. Khan, S.M. Ramay, M.H. Khan, M.K. Mehmood, J. Alloys Compd. 692, 322 (2017). https://doi.org/10.1016/j.jallcom.2016.09.049

    Article  CAS  Google Scholar 

  21. M. Dhiman, S. Rana, K. Batoo, J.K. Sharma, M. Singh, Integr. Ferroelectr. 184, 151 (2017). https://doi.org/10.1080/10584587.2017.1368634

    Article  ADS  CAS  Google Scholar 

  22. S.T. Fardood, A. Ramazani, S. Moradi, J. Sol-Gel Sci. Technol. 82, 432 (2017). https://doi.org/10.1007/s10971-017-4310-6

    Article  CAS  Google Scholar 

  23. A. Franco, H.V.S. Pessoni, T.E.P. Alves, Mater. Lett. 208, 115 (2017). https://doi.org/10.1016/j.matlet.2017.04.101

    Article  CAS  Google Scholar 

  24. M.P.F. Graça, L.C. Costa, F. Amaral, M.A. Valente, W.M. Barcellos, F.N.A. Freire, K.D.A. Sabóia, A.S.B. Sombra, Spectrosc. Lett. 50, 206 (2017). https://doi.org/10.1080/00387010.2017.1282525

    Article  ADS  CAS  Google Scholar 

  25. I. Haïk Dunn, S.E. Jacobo, P.G. Bercoff, J. Alloys Compd. 691, 130 (2017). https://doi.org/10.1016/j.jallcom.2016.08.223

    Article  CAS  Google Scholar 

  26. S.R. Bhongale, H.R. Ingawale, T.J. Shinde, P.N. Vasambekar, J. Rare Earths 36, 390 (2018). https://doi.org/10.1016/j.jre.2017.11.003

    Article  CAS  Google Scholar 

  27. J. Li, D. Wen, Q. Li, T. Qiu, G. Gan, H. Zhang, Ceram. Int. 44, 678 (2018). https://doi.org/10.1016/j.ceramint.2017.09.228

    Article  CAS  Google Scholar 

  28. R. Monsef, M. Ghiyasiyan-Arani, M. Salavati-Niasari, Ultrason. Sonochem. 42, 201 (2018). https://doi.org/10.1016/j.ultsonch.2017.11.025

    Article  CAS  PubMed  Google Scholar 

  29. M.A. Ali, M.N.I. Khan, F.U.Z. Chowdhury, M.M. Hossain, A.K.M.A. Hossain, R. Rashid, A. Nahar, S.M. Hoque, M.A. Matin, M.M. Uddin, J. Mater. Sci. Mat. Electron. 30, 13258 (2019). https://doi.org/10.1007/s10854-019-01689-z

    Article  CAS  Google Scholar 

  30. M.A. Ali, M.N.I. Khan, F.U.Z. Chowdhury, M.M. Hossain, M.Z. Rahaman, S.M. Hoque, M.A. Matin, M.M. Uddin, Results Phys. 14, 102517 (2019). https://doi.org/10.1016/j.rinp.2019.102517

    Article  Google Scholar 

  31. M. Amiri, K. Eskandari, M. Salavati-Niasari, Adv. Colloid Interface Sci. 271, 101982 (2019). https://doi.org/10.1016/j.cis.2019.07.003

    Article  CAS  PubMed  Google Scholar 

  32. L.P. Babu-Reddy, R. Megha, H.G. Raj-Prakash, Y.T. Ravikiran, C.H.V.V. Ramana, S.C. Vijaya-Kumari, D. Kim, Inorg. Chem. Commun. 99, 180 (2019). https://doi.org/10.1016/j.inoche.2018.11.024

    Article  CAS  Google Scholar 

  33. M. Das, M.N.I. Khan, M.A. Matin, M.M. Uddin, J. Supercond. Novel Magn. 32, 3569 (2019). https://doi.org/10.1007/s10948-019-5104-6

    Article  CAS  Google Scholar 

  34. S. Jankov, S. Armaković, E. Tóth, S. Skuban, V. Srdic, Z. Cvejic, Ceram. Int. 45, 20290 (2019). https://doi.org/10.1016/j.ceramint.2019.06.304

    Article  CAS  Google Scholar 

  35. P.T.S.N.K.R.V.F. Mazaleyrat, AIP Conf. Proc. 2142, 160003 (2019). https://doi.org/10.1063/1.5122597

    Article  CAS  Google Scholar 

  36. S. Lad, AIP Conf. Proc. 2142, 180005 (2019). https://doi.org/10.1063/1.5122628

    Article  CAS  Google Scholar 

  37. J. Kaur, M. Kaur, Ceram. Int. 45, 8646 (2019). https://doi.org/10.1016/j.ceramint.2019.01.185

    Article  CAS  Google Scholar 

  38. S. Zinatloo-Ajabshir, M. Baladi, M. Salavati-Niasari, Ultrason. Sonochem. 72, 105420 (2021). https://doi.org/10.1016/j.ultsonch.2020.105420

    Article  CAS  PubMed  Google Scholar 

  39. A. Karami, R. Monsef, M.R. Shihan, L.Y. Qassem, M.W. Falah, M. Salavati-Niasari, Environ. Technol. Innov. 28, 102947 (2022). https://doi.org/10.1016/j.eti.2022.102947

    Article  CAS  Google Scholar 

  40. T. Van Tran, D.T.C. Nguyen, H.T.N. Le, C.D. Duong, L.G. Bach, H.-T.T. Nguyen, T.D. Nguyen, Chemosphere 227, 455 (2019). https://doi.org/10.1016/j.chemosphere.2019.04.079

    Article  ADS  CAS  PubMed  Google Scholar 

  41. M. Aghajanzadeh, E. Naderi, M. Zamani, A. Sharafi, M. Naseri, H. Danafar, Drug Dev. Ind. Pharm. 46, 846 (2020). https://doi.org/10.1080/03639045.2020.1757698

    Article  CAS  PubMed  Google Scholar 

  42. P.S. Mkwae, I. Kortidis, R.E. Kroon, N. Leshabane, M. Jozela, H.C. Swart, S.S. Nkosi, J. Mater. Res. Technol. 9, 16252 (2020). https://doi.org/10.1016/j.jmrt.2020.11.079

    Article  CAS  Google Scholar 

  43. M.I. Khan, M. Waqas, M.A. Naeem, M.S. Hasan, M. Iqbal, A. Mahmood, S.M. Ramay, W. Al-Masry, S.A. Abubshait, H.A. Abubshait, Q. Mahmood, Ceram. Int. 46, 27318 (2020). https://doi.org/10.1016/j.ceramint.2020.07.217

    Article  CAS  Google Scholar 

  44. N. Amin, M.S. Ul-Hasan, Z. Majeed, Z. Latif, M. Ajaz-Nabi, K. Mahmood, A. Ali, K. Mehmood, M. Fatima, M. Akhtar, M.I. Arshad, A. Bibi, M.Z. Iqbal, F. Jabeen, N. Bano, Ceram. Int. 46, 20798 (2020). https://doi.org/10.1016/j.ceramint.2020.05.079

    Article  CAS  Google Scholar 

  45. Z. Wang, P. Lazor, S.K. Saxena, H.S.C. O’Neill, Mater. Res. Bulletin 37, 1589 (2002). https://doi.org/10.1016/S0025-5408(02)00819-X

    Article  CAS  Google Scholar 

  46. G. Pietro, A. Benedetta, B. Marcella, M. Maria Cristina, in Raman Spectroscopy, ed. by N. Gustavo Morari do (IntechOpen, Rijeka, 2018). https://doi.org/10.5772/intechopen.72864.

  47. F. Naaz, H.K. Dubey, C. Kumari, P. Lahiri, SN Appl. Sci. 2, 808 (2020). https://doi.org/10.1007/s42452-020-2611-9

    Article  CAS  Google Scholar 

  48. E. Fantozzi, E. Rama, C. Calvio, B. Albini, P. Galinetto, M. Bini, Materials 14, 2859 (2021). https://doi.org/10.3390/ma14112859

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. U. Rajaji, S. Chinnapaiyan, S.-M. Chen, M. Govindasamy, J.I. Oliveira Filho, W. Khushaim, V. Mani, ACS Appl. Mater. Interfaces 13, 24865 (2021). https://doi.org/10.1021/acsami.1c04597

    Article  CAS  PubMed  Google Scholar 

  50. D. Singh, N.P.S. Chauhan, M. Mozafari, B.L. Hiran, Polym.-Plast. Technol. Eng. 55, 1916 (2016). https://doi.org/10.1080/03602559.2016.1185620

    Article  CAS  Google Scholar 

  51. Y. Liu, S. Jiang, W. Yan, J. Qin, M. He, S. Qin, J. Yu, Polymer 214, 123237 (2021). https://doi.org/10.1016/j.polymer.2020.123237

    Article  CAS  Google Scholar 

  52. M.N. Gorbunova, T.D. Batueva, Russ. J. Appl. Chem. 93, 167 (2020). https://doi.org/10.1134/s1070427220020020

    Article  CAS  Google Scholar 

  53. R. Zakir, S.S. Iqbal, A.U. Rehman, S. Nosheen, T.S. Ahmad, N. Ehsan, F. Inam, Ceram. Int. 47, 28575 (2021). https://doi.org/10.1016/j.ceramint.2021.07.016

    Article  CAS  Google Scholar 

  54. R. Kirithiga, J. Hemalatha, J. Mol. Liq. 317, 113944 (2020). https://doi.org/10.1016/j.molliq.2020.113944

    Article  CAS  Google Scholar 

  55. J.J. Wisser, S. Emori, L. Riddiford, A. Altman, P. Li, K. Mahalingam, B.T. Urwin, B.M. Howe, M.R. Page, A.J. Grutter, B.J. Kirby, Y. Suzuki, Appl. Phys. Lett. 115, 132404 (2019). https://doi.org/10.1063/1.5111326

    Article  ADS  CAS  Google Scholar 

  56. J.B. Shitole, S.N. Keshatti, S.M. Rathod, S.S. Jadhav, Ceram. Int. 47, 17993 (2021). https://doi.org/10.1016/j.ceramint.2021.03.114

    Article  CAS  Google Scholar 

  57. R.N. Kumbhar, T.J. Shinde, S.A. Kamble, V.L. Mathe, J.S. Ghodake, Phys. B Condens. Matter 619, 413161 (2021). https://doi.org/10.1016/j.physb.2021.413161

    Article  CAS  Google Scholar 

  58. M.A. Yousuf, S. Jabeen, M.N. Shahi, M.A. Khan, I. Shakir, M.F. Warsi, Results Phys. 16, 102973 (2020). https://doi.org/10.1016/j.rinp.2020.102973

    Article  Google Scholar 

  59. M.A. Yousuf, M.M. Baig, N.F. Al-Khalli, M.A. Khan, M.F. Aly Aboud, I. Shakir, M.F. Warsi, Ceram. Int. 45, 10936 (2019). https://doi.org/10.1016/j.ceramint.2019.02.174

    Article  CAS  Google Scholar 

  60. L. Yu, A. Sun, N. Suo, Z. Zuo, X. Zhao, W. Zhang, L. Shao, Y. Zhang, J. Mater. Sci. Mater. Electron. 31, 14961 (2020). https://doi.org/10.1007/s10854-020-04059-2

    Article  CAS  Google Scholar 

  61. A.B. Bhosale, S.B. Somvanshi, V.D. Murumkar, K.M. Jadhav, Ceram. Int. 46, 15372 (2020). https://doi.org/10.1016/j.ceramint.2020.03.081

    Article  CAS  Google Scholar 

  62. L.P.B. Reddy, H.G. Rajprakash, Y.T. Ravikiran, K.S. Ganiger, AIP Conf. Proc. 2244, 070040 (2020). https://doi.org/10.1016/j.inoche.2018.11.024

    Article  CAS  Google Scholar 

  63. M.A. Ali, M.N.I. Khan, F.U.Z. Chowdhury, M.M. Hossain, S.M. Hoque, M.M. Uddin, Phase Transit. 94, 23 (2021). https://doi.org/10.1080/01411594.2020.1865535

    Article  CAS  Google Scholar 

  64. M. Dhiman, S. Rana, Sanansha, N. Kumar, M. Singh, J.K. Sharma, J. Mater. Sci. Mater. Electron. 32, 8756 (2021). https://doi.org/10.1007/s10854-021-05547-9

    Article  CAS  Google Scholar 

  65. K.A.-R.A. Al-Assadi, Int. Res. J. Nat. Sci. 4 (2016).

  66. Y. Afra, F. Manteghi, M. Kamel Attar Kar, A. Omidvari (2019).

  67. S. Kumari, V. Kumar, P. Kumar, M. Kar, L. Kumar, Adv. Power Technol. (2014). https://doi.org/10.1016/j.apt.2014.10.002

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Babasaheb Ambedkar Marathwada University Sub-Campus Osmanabad for undertaking this study and to the UGC New Delhi for granting to Miss. Subiya K. Kazi with financial help under the Maulana Azad National Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhakrishnan M. Tigote.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tigote, R.M., Kazi, S.K., Bhore, R.M. et al. Influence of yttrium and magnesium on the optical–magneto properties of ferrite nanoparticles and catalytic study for metal ligand synthesis. J IRAN CHEM SOC 21, 71–85 (2024). https://doi.org/10.1007/s13738-023-02906-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02906-7

Keywords

Navigation