Log in

Enhancement of magnetic properties of Ni–Mg–Co ferrites by Y3+ ions do**

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, yttrium ion-doped nickel–magnesium–cobalt ferrite powder was prepared by the sol–gel auto combustions method. The chemical formula is Ni0.2Mg0.1Co0.7Fe2–xYxO4 (where x = 0.00, 0.02, 0.04, 0.06, and 0.08). The structure and magnetic properties were studied by X-ray diffractometer (XRD), Fourier infrared spectroscopy (FTIR), ultraviolet–visible (UV–Vis), scanning electron microscope (SEM), and vibrating sample magnetometer (VSM). XRD measurements show that Ni–Mg–Co ferrite has a good phase formations, and all samples have single-phase cubic spinel structure. As the do** amount of yttrium ions increases, the lattice constant of the samples increases first and then decreases. FTIR measurements also confirm the formations of the cubic spinel structure of ferrite. The UV–Vis optical analysis shows that the bandgap value of optical energy decreases after do** Y3+ ions. SEM confirmed that the sample was spherical spinel with a particle size of 54–60 nm. The saturation magnetizations (Ms) and remanent magnetizations (Mr) increase first and then decrease with the increase of Y3+ ions content at room temperature. This shows that the small amount of Y3+ ions-doped nickel–magnesium–cobalt nanoferrite can optimize the magnetic properties of the ferrite. The coercivity of the samples also showed a downward trend. The comprehensive measurement data show that the sample has the best magnetic properties when x = 0.02. This is also confirmed that the ferrite can be used as magnetic storage material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Bozadgiev, T. Dimova, T. Mitev, Classifications of ferrospinel structures and textures. J. Am. Ceram. Soc. (1985). https://doi.org/10.1111/j.1151-2916.1985.tb15250.x

    Article  Google Scholar 

  2. M. Rostami, M. Rahimi-Nasrabadi, M.R. Ganjali et al., Facile synthesis and characterizations of TiO2–graphene–ZnFe2−xTbxO4 ternary nano-hybrids. J. Mater. Sci. 52, 7008–7016 (2017)

    Article  CAS  Google Scholar 

  3. B. Geller, A. Coville, Magnetism and magnetic materials. Phys. Today 11, 48–48 (1958)

    Google Scholar 

  4. A.T. Raghavendar, D. Pajic, K. Zadro, T. Milekovic, P.V. Rao, K.M. Jadhav, D. Ravinder, J. Magn. Magn. Mater. 316, 1–7 (2007)

    Article  Google Scholar 

  5. C. Venkataraju, G. Sathishkumar, K. Sivakumar, J. Magn. Magn. Mater. 323, 1817–1822 (2011)

    Article  CAS  Google Scholar 

  6. L. Zhao, H. Yang, L. Yu, Y. Cui, X. Zhao, B. Zou, S. Feng, J. Magn. Magn. Mater. 301, 445–451 (2006)

    Article  CAS  Google Scholar 

  7. S. Uday Bhasker et al., Preparations and characterizations of cobalt magnesium nano ferrites using auto-combustions method. Adv. Mater. Res. 584, 280–284 (2012)

    Article  Google Scholar 

  8. N. Ranvah, Y. Melikhov, I.C. Nlebedim, D.C. Jiles, J.E. Snyder, A.J. Moses, P.I. Williams, Temperature dependence of magnetic anisotropy of germanium/cobalt cosubstituted cobalt ferrite. J. Appl. Phys. 105, 5181–5183 (2009)

    Article  Google Scholar 

  9. S.U. Bhasker, Reddy MR Effect of chromium substitutions on structural, magnetic and electrical properties of magneto ceramic cobalt ferrite nano-particles. J. Sol-Gel Sci. Technol. 73, 396–402 (2015)

    Article  Google Scholar 

  10. J.A. Paulsen, C.C.H. Lo, J.E. Snyder, A.P. Ring, L.L. Jones, D.C. Jiles, Study of the curie temperature of cobalt ferrite based composites for stress sensor applications. IEEE. Trans. Magn. 39, 3316–3318 (2003)

    Article  CAS  Google Scholar 

  11. K.K. Bharathi, J.A. Chelvane, Markandeyulu G Magneto electric properties of Gd and Nd-doped nickel ferrite. J. Magn. Magn. Mater. 321, 3677–3680 (2009)

    Article  Google Scholar 

  12. M. R ahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S. MostafaHosseinpour-Mashkani, ZnFe2−xLaxO4 nanostructure: synthesis, characterizations, and its magnetic properties. J. Mater. Sci. Mater. Electron. 26, 9776–9781 (2015)

    Article  CAS  Google Scholar 

  13. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, Nanocrystalline Ce-doped copper ferrite: synthesis, characterizations, and its photocatalyst applications. J. Mater. Sci. Mater. Electron. 27, 11691–11697 (2016)

    Article  CAS  Google Scholar 

  14. M. Rahimi-Nasrabadi, M. Rostami, F. Ahmadi, Synthesis and characterizations of ZnFe(2x)YbxO4xgraphene nanocomposites by sol–gel method. J. Mater. Sci. Mater. Electron. 27, 11940–11945 (2016)

    Article  CAS  Google Scholar 

  15. S.M. Peymani-Motlagh, N. Moeinian, M. Rostami et al., Effect of Gd3+-, Pr3+- or Sm3+-substituted cobalt–zinc ferrite on photodegradations of methyl orange and cytotoxicity tests. J. Rare Earths 37, 1288–1295 (2019)

    Article  Google Scholar 

  16. X. Pan, A. Sun, Y. Han, Structural and magnetic properties of Bi3+ ions doped Ni–Cu–Co nano ferrites prepared by sol–gel auto combustions method. J. Mater. Sci. Mater. Electron. 30, 4644–4657 (2019)

    Article  CAS  Google Scholar 

  17. K. Chen, H. Yang, F. Liang et al., Microwave-irradiations-assisted combustions toward modified graphite as lithium ions battery anode. ACS Appl. Mater. Interfaces 10, 909–914 (2017)

    Article  Google Scholar 

  18. K. Chen, H. Yang, F. Liang, D. Xue, A.C.S. Appl, Mater. Interfaces 10, 909–914 (2018)

    Article  CAS  Google Scholar 

  19. A. Gholizadeh, E. Jafari, Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni–Cu–Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere. J. Magn. Magn. Mater. 422, 328–336 (2017)

    Article  CAS  Google Scholar 

  20. Z. Liu, Z. Peng, C. Lv et al., Do** effect of Sm3+ on magnetic and dielectric properties of Ni–Zn ferrites. Ceram. Int. 43, 1449–1454 (2017)

    Article  CAS  Google Scholar 

  21. U. Kurtan, R. Topkaya, S. Esir, A. Baykal, Sol–gel auto combustions synthesis of CoFe2O4/1-methyl-2-pyrrolidone nanocomposite: its magnetic characterizations. Ceram. Int. 39, 6407–6413 (2013)

    Article  CAS  Google Scholar 

  22. M.A. Ahmed, S.F. Mansour, M. Afifi, Structural and electrical properties of nanometric Ni–Cu ferrites synthesized by citrate precursor method. J. Magn. Magn. Mater. 324, 4–10 (2012)

    Article  CAS  Google Scholar 

  23. B.R. Babu, M.S.R. Prasad et al., Structural and magnetic properties of Ni0.5Zn0.5AlxFe2−xO4 nano ferrite system. J. Mater. Chem. Phys. 148, 585–591 (2014)

    Article  Google Scholar 

  24. M. Kaiser, Effect of nickel substitutions on some properties of Cu–Zn ferrites. J. Alloys Compd. 468, 15–21 (2009)

    Article  CAS  Google Scholar 

  25. C. Sujatha, K.V. Reddy, K.S. Babu, A.R. Reddy, Rao KH Effect of sintering temperature on electromagnetic properties of NiCuZn ferrite. Ceram. Int. 39, 3077–3086 (2013)

    Article  CAS  Google Scholar 

  26. D. Cullity, S.R. Stock, Elements of X-ray diffractions: Pearson new international editions. Fuel 102, 716–723 (2012)

    Article  Google Scholar 

  27. K. Siraj, M. Khaleeq-ur-Rahman, S.I. Hussain, M.S. Rafique, S. Anjum, Effect of depositions temperature on structural, surface, optical and magnetic properties of pulsed laser deposited Al doped CdO thin films. J. Alloys Compd. 509, 6756–6762 (2011)

    Article  CAS  Google Scholar 

  28. V.J. Angadi, B. Rudraswamy, K. Sadhana, S.R. Murthy, K. Praveena, Effect of Sm3+–Gd3+ on structural, electrical and magnetic properties of Mn–Zn ferrites synthesized via combustions route. J. Alloys Compd. 656, 5–12 (2016)

    Article  Google Scholar 

  29. K. Krieble, T. Schaeffer, J.A. Paulsen, A.P. Ring, C.C.H. Lo, J.E. Snyder, Mössbauer spectroscopy investigations of Mn-substituted Co-ferrite (Co MnxFe2−xO4). J. Appl. Phys. 97, 98–101 (2005)

    Article  Google Scholar 

  30. J.M. Hastzngs, L.M. Corliss, Neutron diffractions studies of zinc ferrite and nickel ferrite. Rev. Mod. Phys. 25, 114–119 (1953)

    Article  Google Scholar 

  31. G.A. Sawatzky, F.V.D. Woude, A.H. Morrish, Mossbauer study of several ferrimagnetic spinels. Phys. Rev. 187, 747–757 (1969)

    Article  CAS  Google Scholar 

  32. M.M. Eltabey, K.M. El-Shokrofy, S.A. Gharbia, Enhancement of the magnetic properties of Ni–Cu–Zn ferrites by the non-magnetic Al3+-ions substitutions. J. Alloys Compd. 509, 2473–2477 (2011)

    Article  CAS  Google Scholar 

  33. M. Ashokkumar, Zn0.96−xCu0.04FexO (0 ≤ x ≤ 004) alloys—optical and structural studies. Superlattices Microstruct. 69, 53–64 (2014)

    Article  CAS  Google Scholar 

  34. P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar, Effect of Ni do** on structural and magnetsic properties of Co1–xNixFe1.9Mn0.1O4. J. Magn. Magn. Mater. 322, 718–726 (2010)

    Article  CAS  Google Scholar 

  35. M.W. Mushtaq et al., Synthesis, structural and biological studies of cobalt ferrite nanoparticles. Bulg. Chem. Commun. 48, 3–565 (2015)

    Google Scholar 

  36. S. Patil, H.B. Naik, G. Nagaraju, R. Viswanath, S. Rashmi, Synthesis of visible light active Gd3+-substituted ZnFe2O4 nanoparticles for photocatalytic and anti-bacterial activities. Eur. Phys. J. 132, 320–328 (2017)

    Google Scholar 

  37. R.C. Kambale, P.A. Shaikh, S.S. Kamble, Y.D. Kolekar, Effect of cobalt substitutions on structural, magnetic and electric proper ties of nickel ferrite. J. Alloys Compd. 478, 599–603 (2009)

    Article  CAS  Google Scholar 

  38. D. Fritsch, C. Ederer, Epitaxial strain effects in the spinel ferrites CoFe2O4 and NiFe2O4 from first principles. Phys. Rev. B 82, 104–117 (2010)

    Article  Google Scholar 

  39. C.N. Chervin, B.J. Clapsaddle, H.W. Chiu et al., Role of cyclic ether and solvent in a non-alkoxide sol–gel synthesis of yttria-stabilized zirconia nanoparticles. Chem. Mater. 18, 4865–4874 (2006)

    Article  CAS  Google Scholar 

  40. V. Chaudhari, S.E. Shirsath, M.L. Mane, R.H. Kadam, S.B. Shelke, Mane DR Crystallographic, magnetic and electrical properties of Ni0.5Cu0.25Zn0.25LaxFe2−xO4 nanoparticles fabricated by sol–gel method. J. Alloys Compd. 549, 213–220 (2013)

    Article  CAS  Google Scholar 

  41. I.P. Muthuselvam, R.N. Bhowmik, Mechanical alloyed Ho~(3+) do** in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322, 767–776 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors declare that the manuscript complies with the ethical rules applicable to this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Sun, A., Suo, N. et al. Enhancement of magnetic properties of Ni–Mg–Co ferrites by Y3+ ions do**. J Mater Sci: Mater Electron 31, 14961–14976 (2020). https://doi.org/10.1007/s10854-020-04059-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04059-2

Navigation