Log in

Fluorescent nanoprobe for detection of naproxen based on doped carbon dots prepared in choline chloride-thiourea deep eutectic solvent

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Choline chloride-thiourea deep eutectic solvent (DES) was prepared and used to microwave-assisted synthesis of nitrogen, sulfur, and chloride doped carbon dots (N, S, Cl-CDs). In this innovative approach, DES is a solvent and a do** agent. The synthesized carbon dots (CDs) were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), transmission electron microscopy (TEM), ultraviolet–visible (UV–Vis), and fluorescence spectroscopy. The average size of N, S, Cl-CDs was 7 nm. The N, S, Cl-CDs had a quantum yield of 26.5% as the result of heteroatoms do** in CDs. The method was based on quenching of the fluorescence intensity by Fe3+ interaction with CDs and then N, S, Cl/CDs + Fe3+ system displayed a sensitive and selective turn-on fluorescence in the presence of naproxen. Linear range and detection limit for naproxen were 0.05–70 µM and 25 nM, respectively. Applicability of this nanoprobe was tested in naproxen determination in pharmaceutical tablets and the method was validated by high-performance liquid chromatography. The mechanism was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Shirinnejad, A. Sarrafi, J. Fluoresc. 29, 1039–1047 (2019)

    Article  CAS  PubMed  Google Scholar 

  2. M. Jafari, J. Tashkhourian, G. Absalan, Spectrochim. Acta A 185, 77–84 (2017)

    Article  CAS  Google Scholar 

  3. P. Rafighi, M.R. Yaftian, B. Haghighi, J. Iran. Chem. Soc. 15, 1209–1221 (2018)

    Article  CAS  Google Scholar 

  4. Z. Dehghani, M. Akhond, G. Absalan, Microchem. J. 160, 105723 (2021)

    Article  CAS  Google Scholar 

  5. K. Li, M. Zhang, X. Ye, Y. Zhang, G. Li, R. Fu et al., RSC Adv. 11, 29073 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. Muneer, I.N. Muhammad, M.A. Abrar, I. Munir, I. Kaukab, A. Sagheer et al., J. Chromatogr. Sep. Tech. 8, 1–5 (2017)

    Article  Google Scholar 

  7. L. Qiao, R. Sun, C. Yu, Y. Tao, Y. Yan, Microchem. J. 170, 106686 (2021)

    Article  CAS  Google Scholar 

  8. L. Papp, S. Krizbai, M. Dobó, G. Hancu, Z.I. Szabó, G. Tóth, Molecules 27, 2986 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A.P. Lima, G.L. Nunes, R.G. Franco, R. Mariano-Neto, G.S. Oliveira, E.M. Richter, E. Nossol, R.A.A. Munoz, J. Electroanal. Chem. 882, 114988 (2021)

    Article  CAS  Google Scholar 

  10. Y. Yang, X. Li, Q. Zhou, L. Sun, T. Zhang, J. Pharmaceut. Biomed. Anal. 193, 113668 (2021)

    Article  CAS  Google Scholar 

  11. G. Ge, L. Li, D. Wang, M. Chen, Z. Zeng, W. **ong, X. Wu, C. Guo, J. Mater. Chem. B 9, 6553–6575 (2021)

    Article  CAS  PubMed  Google Scholar 

  12. S. Miao, K. Liang, J. Zhu, B. Yang, D. Zhao, B. Kong, Nano Today 33, 100879 (2020)

    Article  CAS  Google Scholar 

  13. T.V. de Medeiros, J. Manioudakis, F. Noun, J.R. Macairan, F. Victoria, R. Naccache, J. Mater. Chem. C 7, 7175–7195 (2019)

    Article  Google Scholar 

  14. E.E. Tereshatov, M.Y. Boltoeva, C.M. Folden, Green Chem. 18, 4616–4622 (2016)

    Article  CAS  Google Scholar 

  15. S.D. Çalhan, M. Alaş, M. Aşık, F. Nazlı Dinçer Kaya, R. Genç, J. Mater. Sci. 53, 15362–15375 (2018)

    Article  Google Scholar 

  16. Q. Yin, M. Wang, D. Fang, Y. Zhu, L. Yang, RSC Adv. 11, 16805–16813 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. F. Nazari, R. Tabaraki, Spectrochim. Acta Part A 236, 118341 (2020)

    Article  CAS  Google Scholar 

  18. R. Tabaraki, F. Nazari, J. Fluoresc. 32, 549–558 (2022)

    Article  CAS  PubMed  Google Scholar 

  19. X. Jiang, J. Huang, T. Chen, Q. Zhao, Int. J. Biol. Macromol. 153, 412–420 (2020)

    Article  CAS  PubMed  Google Scholar 

  20. C. Mukesh, D. Mondai, M. Sharma, K. Prasad, Carbohyd. Polym. 103, 466–471 (2014)

    Article  CAS  Google Scholar 

  21. V. García-Herrero, C. Torrado-Salmerón, J.J. García-Rodríguez, G. Torrado, S. Torrado-Santiago, J. Sep. Sci. 42, 1702–1709 (2019)

    Article  PubMed  Google Scholar 

  22. M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmuüller, U. Resch-Genger, Anal. Chem. 81, 6285–6294 (2009)

    Article  CAS  Google Scholar 

  23. S.K. Bajpai, A. D’Souza, B. Suhail, Int. Nano Lett. 9, 203–212 (2019)

    Article  CAS  Google Scholar 

  24. A.B. Siddique, A.K. Pramanick, S. Chatterjee, M. Ray, Sci. Rep. 8, 9770 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  25. L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li et al., ACS Nano 6, 5102–5110 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. F. Manshaei, H. Bagheri, A. Eshaghi, Sensor Actuat. B-Chem 344, 130228 (2021)

    Article  CAS  Google Scholar 

  27. S. Liao, X. Zhao, F. Zhu, M. Chen, Z. Wu, H. Yang et al., Talanta 180, 300–308 (2018)

    Article  CAS  PubMed  Google Scholar 

  28. G. Gao, Y.W. Jiang, H.R. Jia, J. Yang, F.G. Wu, Carbon 134, 232–243 (2018)

    Article  CAS  Google Scholar 

  29. R. Abu-Dahab, E. Khalil, A. Khdair, D. El-Sabawi, I. Hamdan, Jordan J. Pharm. Sci 7, 49–66 (2014)

    Article  Google Scholar 

  30. Z. Wang, Z.F. Fan, Spectrochim. Acta A 189, 195–201 (2018)

    Article  CAS  Google Scholar 

  31. A. Avdeef, Absorption and drug development: solubility, permeability, and charge state (Wiley, 2003)

  32. Y. Song, C. Zhu, J. Song, H. Li, D. Du, Y. Lin, A.C.S. Appl, Mater. Inter. 9, 7399–7405 (2017)

    Article  CAS  Google Scholar 

  33. Y. Fu, S. Zhao, S. Wu, L. Huang, T. Xu, X. **ng et al., Dyes Pigments 172, 107846 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Tabaraki.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabaraki, R., Nazari, F. Fluorescent nanoprobe for detection of naproxen based on doped carbon dots prepared in choline chloride-thiourea deep eutectic solvent. J IRAN CHEM SOC 20, 1031–1038 (2023). https://doi.org/10.1007/s13738-022-02702-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02702-9

Keywords

Navigation