Log in

General Solution and Canonical Quantization of the Conic Path Constrained Second-Class System

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We consider the problem of constrained motion along a conic path under a given external potential function. The model is described as a second-class system capturing the behavior of a certain class of specific quantum field theories. By exhibiting a suitable integration factor, we obtain the general solution for the associated nonlinear differential equations. We perform the canonical quantization in a consistent way in terms of the corresponding Dirac brackets. We apply the Dirac–Bergmann algorithm to unravel and classify the whole internal constraints structure inherent to its dynamical Hamiltonian description, obtain the proper extended Hamiltonian function, determine the Lagrange multiplier and compute all relevant Poisson brackets among the constraints, Hamiltonian and Lagrange multiplier. The complete Dirac brackets algebra in phase space as well as its physical realization in terms of differential operators is explicitly obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Becchi–Rouet–Stora–Tyutin [10,11,12].

  2. Quantum Electrodynamics

  3. Quantum Chromodynamics

  4. Faddeev–Jackiw–BarcelosNeto–Wotzasek [14, 15].

  5. Batalin–Fradkin–Fradkina–Tyutin [18,19,20].

  6. The sign choice for \(\chi _2\) is of course just a matter of convention.

  7. Gauge invariance is related to first class constraints [28, 29]. An alternative description of the present system with gauge symmetry can be done along the lines of reference [7].

  8. Of course, the Hamiltonian description in phase space, taking into account all constraints, leads to the very same final solution.

  9. Batalin–Fradkin–Vilkovisky [31, 32].

References

  1. M.S. Plyushchay, Phys. Lett. B 236, 291 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  2. J. Loeffelholz, G. Morchio, F. Strocchi, Annals Phys. 250, 367 (1996)

    Article  ADS  Google Scholar 

  3. K. Shimizu, Mod. Phys. Lett. A 20, 699 (2005)

    Article  ADS  Google Scholar 

  4. A. Shukla, Adv. High Energy Phys. 2017, 1403937 (2017)

    Article  Google Scholar 

  5. G. D. Barbosa and R. Thibes, Mod. Phys. Lett. A 33, no. 10n11, 1850055 (2018)

  6. G.D. Barbosa, R. Thibes, Braz. J. Phys. 48(4), 380 (2018)

    Article  ADS  Google Scholar 

  7. S.L. Oliveira, C.M.B. Santos, R. Thibes, Braz. J. Phys. 50(4), 480 (2020)

    Article  ADS  Google Scholar 

  8. B.F. Rizzuti, G.F. Vasconcelos, Braz. J. Phys. 52(3), 63 (2022)

    Article  ADS  Google Scholar 

  9. V.K. Pandey, Adv. High Energy Phys. 2022, 2158485 (2022)

    Article  Google Scholar 

  10. C. Becchi, A. Rouet, R. Stora, Phys. Lett. B 52, 344 (1974)

    Article  ADS  Google Scholar 

  11. C. Becchi, A. Rouet, R. Stora, Commun. Math. Phys. 42, 127 (1975)

    Article  ADS  Google Scholar 

  12. I. V. Tyutin, Gauge Invariance in Field Theory and Statistical Physics in Operator Formalism. Preprint of P.N. Lebedev Physical Institute, No. 39 [ar**v:0812.0580 [hep-th]]

  13. D. Nemeschansky, C.R. Preitschopf, M. Weinstein, Annals Phys. 183, 226 (1988)

    Article  ADS  Google Scholar 

  14. L.D. Faddeev, R. Jackiw, Phys. Rev. Lett. 60, 1692 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  15. J. Barcelos-Neto, C. Wotzasek, Int. J. Mod. Phys. A 7, 4981 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  16. S. Gupta, R.P. Malik, Eur. Phys. J. C 68, 325 (2010)

    Article  ADS  Google Scholar 

  17. D. Shukla, T. Bhanja and R. P. Malik, Adv. High Energy Phys. 2016, 2618150 (2016). Erratum: [Adv. High Energy Phys. 2018, 5217871 (2018)]

  18. I. A. Batalin and E. S. Fradkin, Phys. Lett. B 180, 157 (1986) [erratum: Phys. Lett. B 236, 528 (1990)]

  19. I. A. Batalin, E. S. Fradkin and T. E. Fradkina, Nucl. Phys. B 314, 158 (1989) [erratum: Nucl. Phys. B 323, 734 (1989)]

  20. I.A. Batalin, I.V. Tyutin, Int. J. Mod. Phys. A 6, 3255 (1991)

    Article  ADS  Google Scholar 

  21. V. K. Pandey and R. Thibes, BFFT Nonlinear Constraints Abelianization of a Prototypical Second-Class System. [ar**v:2103.05626 [hep-th]] (2021)

  22. R. Thibes, Mod. Phys. Lett. A 36 (17), 2150116 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  23. P.A.M. Dirac, Can. J. Math. 2, 129 (1950)

    Article  Google Scholar 

  24. J.L. Anderson, P.G. Bergmann, Phys. Rev. 83, 1018 (1951)

    Article  MathSciNet  ADS  Google Scholar 

  25. P. A. M. Dirac, Lectures on Quantum Mechanics. Belfer Graduate School of Science Monographs No. 2, Yeshiva University, New York (1964)

  26. K. Sundermeyer, Constrained Dynamics with Applications to Yang-mills Theory, General Relativity, Classical Spin, Dual String Model. Lect. Notes Phys. 169, 1 (1982)

    Article  MathSciNet  Google Scholar 

  27. D. M. Gitman and I. V. Tyutin, Quantization of Fields with Constraints, Springer Series in Nuclear and Particle Physics. Springer-Verlag Berlin Heidelberg (1990)

  28. M. Henneaux, C. Teitelboim, Quantization of gauge systems (Univ. Pr, Princeton, USA, 1992)

    Book  Google Scholar 

  29. R. Thibes, Eur. J. Phys. 41(5), 055203 (2020)

  30. I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series and Products, 6th edn. (Academic Press, USA, 2000)

    MATH  Google Scholar 

  31. E.S. Fradkin, G.A. Vilkovisky, Phys. Lett. B 55, 224 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  32. I.A. Batalin, G.A. Vilkovisky, Phys. Lett. B 69, 309 (1977)

    Article  ADS  Google Scholar 

Download references

Funding

RLC acknowledges partial support from FAPESB (Fundação de Amparo à Pesquisa do Estado da Bahia), Bahia, Brazil, under scientific initiation scholarship no 1898/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Thibes.

Ethics declarations

Conflict of interest

There was no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A - Constraint Poisson Brackets

We present here the technical details for obtaining Eqs. (20) and (21) as well as the explicit form for the corresponding functions \(\Omega\) and F.

To obtain \(\{\chi _3,\lambda \}\) from Eqs. (15) and (14), notice that if we define

$$\begin{aligned} T_x\equiv (2Ax+By+D)\,,~~~T_y\equiv (Bx+2Cy+E)\,, \end{aligned}$$
(80)
$$\begin{aligned} X\equiv T_x (V_{xx}+8Az)+ T_y(V_{xy}+4Bz)+3BV_y+6AV_x \end{aligned}$$
(81)

and

$$\begin{aligned} Y\equiv T_x(V_{xy}+4Bz)+T_y(V_{yy}+8Cz) +6CV_y + 3BV_x \, , \end{aligned}$$
(82)

we may write

$$\begin{aligned} \{\chi _3,\lambda \}= -\frac{1}{m^2M^2}\left[ p_x \Omega ^{x} + p_y \Omega ^{y} \right] \, , \end{aligned}$$
(83)

with

$$\begin{aligned} \Omega ^x &= M(-T_x X_x + 2AX + BY - T_y X_y)\\ &~~~~~~~~~~+X(T_xM_x+T_y M_y)\,, \end{aligned}$$
(84)

and

$$\begin{aligned} \Omega ^y &= M(-T_xY_x+BX-T_yY_y+2CY) \\&~~~~~~~~~~+ Y(T_xM_x+T_yM_y)\,. \end{aligned}$$
(85)

Then, an explicit calculation gives

$$\begin{aligned} \Omega ^x=\; & {} \Big [ 6AT_x^2 + 4B T_xT_y + (2A+4C)T_y^2 \Big ] X \nonumber \\&+ BMY\nonumber -M \Big [ T_x(8AV_{xx}+4BV_{xy}\\&+(16A^2+4B^2)z + T_x V_{xxx} + T_y V_{xxy}) \nonumber \\&+T_y ((2C+6A)V_{xy} + 8B(A+C)z \nonumber \\&+ T_x V_{xxy} + T_y V_{xyy} + BV_{xx} + 3B V_{yy}) \Big ] \end{aligned}$$
(86)

and

$$\begin{aligned} \Omega ^y= \; & \Big [ (4A+2C)T_x^2 + 4B T_xT_y + 6CT_y^2 \Big ] Y \nonumber \\&+ BMX- M \Big [ T_x ((2A+6C)V_{xy} \nonumber \\&+ 8B(A+C)z + T_x V_{xxy} + T_y V_{xyy} \nonumber \\&+ BV_{yy} + 3B V_{xx}) + T_y(8CV_{yy}+4BV_{xy}\nonumber \\&+(16C^2+4B^2)z + T_y V_{yyy} + T_x V_{xyy}) \Big ] \, , \end{aligned}$$
(87)

which corresponds to the expressions for \(\Omega ^{x}(x,y,z)\) and \(\Omega ^{y}(x,y,z)\) within equation (20).

Concerning \(\{\chi _4,\lambda \}\), note that if we define further

$$\begin{aligned} P\equiv Ap_x^2+Bp_xp_y+Cp_y^2\,, \end{aligned}$$
(88)

we may write

$$\begin{aligned} \{\chi _4,\lambda \}=\frac{2}{m^2}\{P,\lambda \}-\frac{z}{m}\{ M,\lambda \} -\frac{1}{m} \{N,\lambda \} \end{aligned}$$
(89)

with

$$\begin{aligned} \frac{2}{m^2}\{P,\lambda \}=p_x^2F_{(2)}^{xx}+p_xp_yF_{(2)}^{xy}+p_y^2F_{(2)}^{yy} \, , \end{aligned}$$
(90)

where

$$\begin{aligned} F_{(2)}^{xx}=\;& \frac{2}{m^3M^2}\Big [ (2AX_x+BX_y)M\\&-2X\Big ( (4A^2+B^2)T_x+2B(A+C)T_y \Big ) \Big ] \, , \end{aligned}$$
(91)
$$\begin{aligned} F_{(2)}^{yy}=\;& \frac{2}{m^3M^2}\Big [ (BY_x+2CY_y)M\\&-2Y\Big ( 2B(A+C)T_x + (4C^2+B^2)T_y \Big ) \Big ] \end{aligned}$$
(92)

and

$$\begin{aligned} F_{(2)}^{xy}= & {} \frac{2}{m^3M^2}\Big [ (2AY_x+BX_x+BY_y+2CX_y)M\\&-2(BX+2AY)(2AT_x+BT_y) \nonumber -2(BY\\&+2CX)(BT_x+2CT_y)\Big ] \end{aligned}$$
(93)

correspond to the functions defined in Eq. (21). Furthermore, note that the remaining momenta-independent part of \(\{\chi _4,\lambda \}\) is given by

$$\begin{aligned} F_{(0)}& = -\frac{z}{m}\{ M,\lambda \} -\frac{1}{m} \{N,\lambda \} \\& = \frac{1}{m^2M} \Big [ X(zM_x+N_x)+Y(zM_y+N_y) \Big ] \end{aligned}$$
(94)

corresponding to \(F_{(0)}\) as defined in Eq. (21).

Appendix B - DBs for the Auxiliary Variable z

Concerning the auxiliary variable z introduced in Eq. (3) to implement the restriction due to Eq. (1), we have the non-null DBs

$$\begin{aligned} \{x,z\}^*&=2m^{-1}M^{-1}\big (Bx+2Cy+E\big ) \{p_x,p_y\}^*\,,\\ \{y,z\}^*&=2m^{-1}M^{-1}(2Ax+By+D) \{p_y,p_x\}^*\, , \end{aligned}$$
(95)

and

$$\begin{aligned} \{z,p_x\}^*&{}=-2m^{-1} \left( 2Cp_y+Bp_x\right) \{p_x,p_y\}^* \\ &{} \; \, ~~~+M^{-2}(Bx+2Cy+E) \Big [ V_x \bar{K}(y)-V_yK(x) \\ &{} \; \, ~~~ +\big ((2Ax+By+D)^2 -(Bx+2Cy+E)^2\big )\big (V_{xy}+2zB\big ) \\ &{} \; \, ~~~ -(2Ax+By+D)(Bx+2Cy+E)\big (V_{xx}-V_{yy}+2A-2C\big ) \Big ] \, ,\\ \{z,p_y\}^*&{}=2m^{-1} \left( 2Ap_x+Bp_y\right) \{p_x,p_y\}^* \\ &{} \; \, ~~~-M^{-2}(2Ax+By+D) \Big [ V_x \bar{K}(y)-V_yK(x) \\ &{} \; \, ~~~ +\big ((2Ax+By+D)^2 -(Bx+2Cy+E)^2\big )\big (V_{xy}+2zB\big ) \\ &{} \; \, ~~~ -(2Ax+By+D)(Bx+2Cy+E)\big (V_{xx}-V_{yy}+2A-2C\big ) \Big ] \, , \end{aligned}$$
(96)

which also follow from definition (57). As we can see, the derivatives of the potential function V(xy) show up only in the Dirac brackets among z and the momenta in Eq. (96). Of course, the DB between any phase space function and \(p_z\) is null, as the latter constitutes one of constraints (15) in itself.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caires, R.L., Oliveira, S.L. & Thibes, R. General Solution and Canonical Quantization of the Conic Path Constrained Second-Class System. Braz J Phys 52, 113 (2022). https://doi.org/10.1007/s13538-022-01107-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01107-6

Keywords

Navigation