Log in

Classical Gauge Principle - From Field Theories to Classical Mechanics

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper we discuss how the gauge principle can be applied to classical-mechanics models with finite degrees of freedom. The local invariance of a model is understood as its invariance under the action of a matrix Lie group of transformations parameterized by arbitrary functions. It is formally presented how this property can be introduced in such systems, followed by modern applications. Furthermore, Lagrangians describing classical-mechanics systems with local invariance are separated in equivalence classes according to their local structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The Zitterbewegung is a trembling motion the free electron would experience. It was first predicted by Schrödinger when analyzing the Dirac equation [45].

References

  1. R. Utiyama, Phys. Rev. 101, 1597–1607 (1956). https://doi.org/10.1103/PhysRev.101.1597

    Article  ADS  MathSciNet  Google Scholar 

  2. C.N. Yang, R.L. Mills, Phys. Rev. 96, 191–195 (1954). https://doi.org/10.1103/PhysRev.96.191

    Article  ADS  MathSciNet  Google Scholar 

  3. J. Baez, J. Huerta, Bull. Amer. Math. Soc. 47 (2010). https://doi.org/10.1090/S0273-0979-10-01294-2

  4. H. Weyl, Sitzungsber. Preuss. Akad. Berlin, 465–478 (1918)

  5. J. Lindgren, J. Liukkonen, J. Phys.: Conf. Ser. 1956, 012017 (2021). https://doi.org/10.1088/1742-6596/1956/1/012017

  6. G B. Folland, Quantum field theory : a tourist guide for mathematicians (American Mathematical Society, 2008), pp. 291-292

  7. G.B. Folland, Weyl manifolds. J. Diff. Geo. 4, 145–153 (1970)

    MathSciNet  MATH  Google Scholar 

  8. G.S. Hall, J. Math. Phys. 33, 2633–2638 (1992). https://doi.org/10.1063/1.529582

    Article  ADS  MathSciNet  Google Scholar 

  9. F. Debbasch, Amer. J. Phys. 61, 1131–1133 (1993). https://doi.org/10.1119/1.17308

    Article  ADS  MathSciNet  Google Scholar 

  10. A.A. Deriglazov, B.F. Rizzuti, Amer. J. Phys. 79, 882–885 (2011). https://doi.org/10.1119/1.3593270

    Article  ADS  Google Scholar 

  11. G.G. Fulop, D.M. Gitman, I.V. Tyutin, Int. J. Theor. Phys. 38, 1941–1968 (1999). https://doi.org/10.1023/A:1026641400067

    Article  Google Scholar 

  12. E. Massa, E. Pagani, P. Lorenzoni, Trans. Theory Stat. Phys. 29, 69–91 (2000). https://doi.org/10.1080/00411450008205861

    Article  ADS  Google Scholar 

  13. V.G. Gueorguiev, A. Maeder, Symmetry 13, 522 (2021). https://doi.org/10.3390/sym13030522

    Article  Google Scholar 

  14. V.G. Gueorguiev, A. Maeder, Symmetry 13, 379 (2021). https://doi.org/10.3390/sym13030379

    Article  Google Scholar 

  15. P. Gurfil, Chaos 17(2007). https://doi.org/10.1063/1.2720098

  16. R. Ferraro, Gen. Relativ. Gravit. 48, 23 (2016). https://doi.org/10.1007/s10714-016-2018-5

    Article  ADS  Google Scholar 

  17. A.A. Deriglazov, B.F. Rizzuti, Phys. Rev. D 83(2011). https://doi.org/10.1103/PhysRevD.83.125011

  18. B.F. Rizzuti, G.F. Vasconcelos Junior, M. A. Resende, OAJMTP 3, 8-15 (2020)

  19. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485–491 (1959). https://doi.org/10.1103/PhysRev.115.485

    Article  ADS  MathSciNet  Google Scholar 

  20. P.A.M. Dirac, Lectures on quantum mechanics (Dover Publications, Mineola, 2001)

    Google Scholar 

  21. Dmitriy M. Gitman, Igor V. Tyutin, Quantization of Fields with Constraints (Springer, Berlin, Heidelberg, 1990)

    Book  Google Scholar 

  22. M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princeton Univ. Press, Princeton, 1992)

    Book  Google Scholar 

  23. A. Deriglazov, Classical Mechanics - Hamiltonian and Lagrangian Formalism (Springer International Publishing, Switzerland, 2017)

    MATH  Google Scholar 

  24. V.A. Borochov, I.V. Tyutin, Phys. Atom. Nuclei 61, 1603 (1998)

    ADS  Google Scholar 

  25. V.A. Borochov, I.V. Tyutin, Phys. Atom. Nuclei 62, 1070 (1999)

    ADS  Google Scholar 

  26. D.M. Gitman, I.V. Tyutin, Int. J. Mod. Phys. A 21, 327–360 (2006). https://doi.org/10.1142/S0217751X06024979

    Article  ADS  Google Scholar 

  27. A.A. Deriglazov, J. Phys. A: Math. Theo. 40, 11083–11092 (2007). https://doi.org/10.1088/1751-8113/40/36/008

    Article  ADS  Google Scholar 

  28. A.N. Rocha, B.F. Rizzuti, D.S. Mota, Rev. Bras. Ensino Física 35, 4304 (2013). https://doi.org/10.1590/S1806-11172013000400004

    Article  Google Scholar 

  29. G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35–59 (2002). https://doi.org/10.1142/S0218271802001330

    Article  ADS  MathSciNet  Google Scholar 

  30. C. Rovelli, L. Smolin, Nucl. Phys. B 442, 593–619 (1995). https://doi.org/10.1016/0550-3213(95)00150-Q

    Article  ADS  Google Scholar 

  31. G. Amelino-Camelia, Symmetry 2, 230–271 (2010). https://doi.org/10.3390/sym2010230

    Article  Google Scholar 

  32. J. Magueijo, L. Smolin, Phys. Rev. Lett. 88, 190403 (2002). https://doi.org/10.1103/PhysRevLett.88.190403

  33. B.F. Rizzuti, G.F. Vasconcelos Jr., Phys. Lett. B 817(2021). https://doi.org/10.1016/j.physletb.2021.136334

  34. B.F. Rizzuti, Comment on A Lagrangian for DSR particle and the Role of Noncommutativity. (2010). http://arxiv.org/abs/0710.3724

  35. B.F. Rizzuti, A.A. Deriglazov, Phys. Lett. B 702, 173–176 (2011). https://doi.org/10.1016/j.physletb.2011.06.078

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Deriglazov, B.F. Rizzuti, G. Zamudio, Spinning particles: Possibility of space-time interpretation for the inner space of spin (Lap Lambert Academic Publishing, Saarbrocken, 2012)

    Google Scholar 

  37. A.A. Deriglazov, B.F. Rizzuti, G.P. Zamudio, P.S. Castro, J. Math. Phys. 53(2012). https://doi.org/10.1063/1.4759500

  38. C.J. Walczyk, Z. Hasiewicz, The spinning particles - classical description. https://arxiv.org/abs/1909.07170

  39. J. Frenkel, Zeitschrift fur Physik 37, 243–262 (1926). https://doi.org/10.1007/BF01397099

    Article  ADS  Google Scholar 

  40. L.H. Thomas, Nature 117, 514 (1926). https://doi.org/10.1038/117514a0

    Article  ADS  Google Scholar 

  41. V. Bargmann, L. Michel, V.L. Telegdi, Phys. Rev. Lett. 2, 435–436 (1959). https://doi.org/10.1103/PhysRevLett.2.435

    Article  ADS  Google Scholar 

  42. F.A. Berezin, M.S. Marinov, JETP Letters 21, 320–321 (1975)

    ADS  Google Scholar 

  43. F.A. Berezin, M.S. Marinov, Annals of Physics 104, 336–362 (1977). https://doi.org/10.1016/0003-4916(77)90335-9

    Article  ADS  Google Scholar 

  44. B.F. Rizzuti, E.M. Abreu, P.V. Alves, Physical Review D 90, 027502 (2014). https://doi.org/10.1103/PhysRevD.90.027502

  45. E. Schrödinger, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 24, 418 (1930)

    Google Scholar 

  46. A.A. Deriglazov, SIGMA 6, 016 (2010). https://doi.org/10.3842/SIGMA.2010.016

    Article  Google Scholar 

Download references

Acknowledgements

BFR would like to thank G. Caetano for indicating valuable references concerning the analogy between non-Abelian gauge theories and general relativity.

Funding

This work was supported by grant #2021/09311-5, São Paulo Research Foundation (FAPESP) and Programa Institucional de Bolsas de Iniciação Científica - XXIX PIBIC/CNPq/UFJF - 2020/2021, project number ID47862. GFVJr was a CNPq/Brazil fellow during the first months of production of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme F. Vasconcelos Jr..

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to decla re that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizzuti, B.F., Vasconcelos, G.F. Classical Gauge Principle - From Field Theories to Classical Mechanics. Braz J Phys 52, 63 (2022). https://doi.org/10.1007/s13538-022-01070-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01070-2

Keywords

Navigation