Log in

Defect influence on the electronic and magnetic properties of silver-doped (6,0) single-walled ZnO nanotubes: a first-principles study

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We investigated the electronic and magnetic properties of pure and defected single-wall (6,0) chiral ZnO nanotubes. In a consecutive DFT-LSDA+U electronic structure simulation, influence on the nature and origin of ferromagnetism (FM) are studied for an Ag-doped single-walled ZnO nanotube system. The configurations with zinc host atoms replaced by silver atoms are p-type materials. For the Ag-doped ZnO nanotube (ZnONT) configurations, the energy gap decreases with the impurity concentration. The total energy calculations for Ag-doped ZnONT systems show the stability of the ferromagnetic phase. In the case of Ag do** and with Zn vacancy, the wide energy gap decrease and the total magnetic moment of this system increase by ~ 2 µB compared with the free vacancy case. From first-principles calculations, it shows that ZnO:Ag NT systems are semi-magnetic ferromagnetic materials, and it is a promising candidate for spintronics device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S Benramache, A Rahal and B Benhaoua Optik 124 663 (2013)

    Article  Google Scholar 

  2. F Benharrats, K Zitouni, A Kadri and B Gil Superlattices Microstruct. 47 592 (2010)

    Article  ADS  Google Scholar 

  3. D W Kang, S H Kuk, K S Ji, H M Lee and M K Han Energy Mater. Sol. Cells 95 138 (2011)

    Article  Google Scholar 

  4. C L Dong, C Persson, L Vayssieres, A Augustsson, T Schmitt, M Mattesini, R Ahuja, C L Chang and J H Guo Phys. Rev. B 70 195325 (2004)

    Article  ADS  Google Scholar 

  5. V N Jafarova and G S Orudzhev Solid State Commun. 325 114166 (2021)

    Article  Google Scholar 

  6. V N Jafarova Int. J. Mod. Phys. B 36 2250156 (2022)

    Article  ADS  Google Scholar 

  7. G F Neumark, R M Park and J M Depuydt Phys. Today 47 26 (1994)

    Article  Google Scholar 

  8. H Karzel, W Potzel, M Köfferlein, W Schiessl, M Steiner, U Hiller and G M Kalvius Phys. Rev. B 53 11425 (1996)

    Article  ADS  Google Scholar 

  9. A Arif, O Belahssen, S Gareh and S Benramache J. Semicond. 36 013001 (2015)

    Article  ADS  Google Scholar 

  10. D C Look and B Claflin Mater. Sci. Eng. B 80 383 (2001)

    Article  Google Scholar 

  11. W **, I-K Lee and A Kompch J. Eur. Ceram. Soc. 27 4333 (2007)

    Article  Google Scholar 

  12. B Wang, J Iqbal, X Shan and G Huang Mater. Chem. Phys. 113 103 (2009)

    Article  Google Scholar 

  13. M Sun, Q F Zhang and J L Wu J. Phys. D 40 3798 (2007)

    Article  ADS  Google Scholar 

  14. C K Xu, J Chun, D E Kim, J J Kim, B Chon and T Joo Appl. Phys. Lett. 90 083113 (2007)

    Article  ADS  Google Scholar 

  15. J B Cui and U J Gibson Appl. Phys. Lett. 87 133108 (2005)

    Article  ADS  Google Scholar 

  16. H Zhang, D Yang, X Ma, N Du, J Wu and D Que J. Phys. Chem. B 110 827 (2006)

    Article  Google Scholar 

  17. V N Jafarova, G S Orudzhev, S S Huseynova, V R Stempitsky and M S Baranava Semicond. 52 1047 (2018)

    Article  ADS  Google Scholar 

  18. Y Liu, Q Hou, Sh Sha and Z Xu Vacuum 173 109127 (2020)

    Article  ADS  Google Scholar 

  19. Z A Khan, Anshu and S Ghosh Environ. Sci. & Engi. 551 (2014)

  20. K Sato and H Katayama-Yoshida Jpn. J. Appl. Phys. 39 L555 (2000)

    Article  ADS  Google Scholar 

  21. K Sato and H Katayama-Yoshida Jpn. J. Appl. Phys. 40 L334 (2001)

    Article  ADS  Google Scholar 

  22. X-Y Feng, Ch-W Zhang, X-J Xu and P-J Wang Nanoscale Res. Lett. 8 365 (2013)

    Article  ADS  Google Scholar 

  23. B Dey, S N Rout, M Kar and S K Srivastava J. Supercond. Nov. Magn. 36 657 (2023)

    Article  Google Scholar 

  24. A Janotti and C G Van de Walle Phys. Rev. B 76 165202 (2007)

    Article  ADS  Google Scholar 

  25. M D Mccluskey and S J Jokela J. Appl. Phys. 106 071101 (2009)

    Article  ADS  Google Scholar 

  26. M Ali, N Amrane and N Tit Results Phys. 16 102907 (2020)

    Article  Google Scholar 

  27. N Sharma, R Kant and S Kumar J. Electron. Mater. 47 4098 (2018)

    Article  ADS  Google Scholar 

  28. R Chauhan, A Kumar and R P Chaudhary J. Sol-Gel. Sci. Technol. 63 546 (2012)

    Article  Google Scholar 

  29. M Thomas, W Sun and J Cui J. Phys. Chem. C 116 6383 (2012)

    Article  Google Scholar 

  30. M He et al Appl. Phys. Lett. 99 222511 (2011)

    Article  ADS  Google Scholar 

  31. Y W Ma et al Appl. Phys. Lett. 93 042514 (2008)

    Article  ADS  Google Scholar 

  32. M Es-semyhy, M Ouahman, O El Bounagui, F Bentayeb, N Tahiri and M Erraoudi J. Supercond. Nov. Magn. 31 2201 (2018)

    Article  Google Scholar 

  33. J G S Santo et al Materials (Basel) 13 2907 (2020)

    Article  ADS  Google Scholar 

  34. A H Shah, M Basheer Ahamed, E Manikandan, R Chandramohan and M Iydroose J. Mater. Sci. Mater. Electron. 24 2302 (2013)

    Article  Google Scholar 

  35. G Chai, C Lin, J Wang, M Zhang, J Wei and W Cheng J. Phys. Chem. C 115 2907 (2011)

    Article  Google Scholar 

  36. S S Wagh et al ACS Omega 8 7779 (2023)

    Article  Google Scholar 

  37. M Jarvin et al Environ. Sci. Pollut. Res. Int. 29 57330 (2022)

    Article  Google Scholar 

  38. N Ali et al Sci. Rep. 9 20039 (2019)

    Article  ADS  Google Scholar 

  39. J Li et al Ceram. Int. B 46 18639 (2020)

    Article  Google Scholar 

  40. A-Y Li, X-D Li, Q-B Lin, S-Q Wu and Z-Z Zhu Solid State Sci. 14 769 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vusala Nabi Jafarova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarova, V.N., Scurtu, I.C., Stanca, C. et al. Defect influence on the electronic and magnetic properties of silver-doped (6,0) single-walled ZnO nanotubes: a first-principles study. Indian J Phys 98, 2335–2346 (2024). https://doi.org/10.1007/s12648-023-03044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-03044-9

Keywords

Navigation