Log in

Room Temperature d0 Ferromagnetism of Ag:ZnO Compounds

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

With an aim to explore the d0 ferromagnetism in Ag-doped ZnO compounds, the poly-crystalline samples of \({\mathrm{Zn}}_{1-\mathrm{x}}{\mathrm{Ag}}_{\mathrm{x}}\mathrm{O}\) (with 0 \(\le\) x \(\le\) 0.12) were synthesized by a standard solid-state synthesis technique. The XRD analyses indicated that these compounds have been formed as Ag:ZnO nanocomposite. According to scanning electron microstructural study, all compounds have a homogenous nearly spherical shape morphology. The EDS spectra reveal that the final produced compounds do not contain any unwanted external impurity. The magnetization versus field measurement at room temperature demonstrates that the undoped ZnO compound shows ferromagnetism embedded in diamagnetic matrix, whereas all Ag-doped ZnO samples exhibit a clear room temperature ferromagnetic behavior with coercivity values between 80 and 196 Oe. The maximum saturation magnetization was obtained for the Zn0.97Ag0.03O sample; however, it declines subsequently. The bound magnetic polarons (BMPs) has been considered to explain the observed ferromagnetic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available within the article.

References

  1. Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998). https://doi.org/10.1126/science.281.5379.951

    Article  ADS  Google Scholar 

  2. Dietl, T.: A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010). https://doi.org/10.1038/nmat2898

    Article  ADS  Google Scholar 

  3. Sharma, P., Gupta, A., Rao, K.V., Owens, F.J., Sharma, R., Ahuja, R., Guillen, J.M.O., Johansson, B., Gehring, G.A.: Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2, 673–677 (2003). https://doi.org/10.1038/nmat984

    Article  ADS  Google Scholar 

  4. Subramanian, M., Thakur, P., Tanemura, M., Hihara, T., Ganesan, V., Soga, T., Chae, K.H., Jayavel, R., Jimbo, T.: Intrinsic ferromagnetism and magnetic anisotropy in Gd-doped ZnO thin films synthesized by pulsed spray pyrolysis method. J. Appl. Phys. 108, 53904 (2010). https://doi.org/10.1063/1.3475992

    Article  ADS  Google Scholar 

  5. Srivastava S. K., Brahma R., Datta S., Guha Aakansha S., Baro S.S., Narzary B., Basumatary D.R., Kar M., Ravi S.: Effect of (Ni-Ag) co-do** on crystal structure and magnetic Property of SnO2. Mater. Res. Express 6, 126107 (2019). https://doi.org/10.1088/2053-1591/ab58b1

  6. Srivastava, S.K., Aakansha, S.S., Baro, B., Narzary, D.R., Basumatary, R., Brahma, S., Ravi, S.: Crystal structure and magnetic properties of (Co-Ag) co-doped SnO2 compounds. J. Supercond. Nov. Magnetism 34, 461–467 (2021). https://doi.org/10.1007/s10948-020-05676-y

    Article  Google Scholar 

  7. Srivastava S.K., Lejay P., Barbara B., Pailh`es S., Bouzerar G.: Absence of ferromagnetism in Mn-doped tetragonal zirconia, J. Appl. Phys. 110, 043929  (2011). https://doi.org/10.1063/1.3626788

  8. Srivastava, S.K.: Magnetic property of Mn-doped monoclinic ZrO2 compounds. J. Supercond. Nov. Magnetism 33(8), 2501–2505 (2020). https://doi.org/10.1007/s10948-020-05522-1

    Article  Google Scholar 

  9. Bryan, J.D., Heald, S.M., Chambers, S.A., Gamelin, D.R.: Strong room-temperature ferromagnetism in Co2+-doped TiO2 made from colloidal nanocrystals. J. Am. Chem. Soc. 126, 11640–11647 (2004). https://doi.org/10.1021/ja047381r

    Article  Google Scholar 

  10. Coey, J.: Dilute magnetic oxides. Curr. Opin. Solid State Mater. Sci. 10, 83–89 (2006). https://doi.org/10.1016/j.cossms.2006.12.002

    Article  ADS  Google Scholar 

  11. Bouzerar G., Ziman T.: Model for vacancy-induced d0 ferromagnetism in oxide compounds. Phys. Rev. Lett. 96, 207602 (2006). https://doi.org/10.1103/physrevlett.96.207602

  12. Osorio-Guillen J., Lany S., Barabash S.V., Zunger A.: Magnetism without magnetic ions: Percolation, exchange, and formation energies of magnetism-promoting intrinsic defects in CaO. Phys. Rev. Lett. 96, 1072033 (2006). https://doi.org/10.1103/PhysRevLett.96.107203

  13. Pan H, Yi J.B., Shen L., Wu R.Q., Yang J.H., Lin J.Y., Feng Y.P., Ding J., Van L.H., Yin J.H.: Room-temperature ferromagnetism in carbon-doped ZnO. Phys. Rev. Lett. 99, 127201 (2007). https://doi.org/10.1103/PhysRevLett.99.127201

  14. Young, D.P., Hall, D., Torelli, M.E., Fisk, Z., Sarrao, J.L., Thompson, J.D., Ott, H.-R., Oseroff, S.B., Goodrich, R.G., Zysler, R.: High-temperature weak ferromagnetism in a low-density free-electron gas. Nature 397, 412 (1999). https://doi.org/10.1038/17081

    Article  ADS  Google Scholar 

  15. Maca F., Kudrnovsky J., Drchal V., Bouzerar G.: Magnetism without magnetic impurities in ZrO2 oxide. Appl. Phys. Lett. 92, 212503 (2008). https://doi.org/10.1063/1.2936858

  16. Wang, J., Zhou, D., Li, Y., Wu, P.: Experimental and first-principle studies of ferromagnetism in Na-doped SnO2 nanoparticles. Vacuum 141, 62–67 (2017). https://doi.org/10.1016/j.vacuum.2017.03.024

    Article  ADS  Google Scholar 

  17. Chouhan L., Srivastava S.K.: A comprehensive review on recent advancements in d0 ferromagnetic oxide materials for spintronics application. Mater. Sci. Semicond. Process. 147, 106768 (2022). https://doi.org/10.1016/j.mssp.2022.106768

  18. Dey, B., Narzary, R., Chouhan, L., Bhattacharjee, S., Parida, B.N., Mondal, A., Ravi, S., Srivastava, S.K.: Crystal structure, optical and dielectric properties of Ag:ZnO composite-like compounds. J. Mater. Sci. Mater. Electron. 33, 2855–2868 (2022). https://doi.org/10.1007/s10854-021-07560-4

    Article  Google Scholar 

  19. Narzary R., Dey B., Chouhan L., Kumar S., Ravi S., Srivastava S.K.: Optical band gap tuning, zero dielectric loss and room temperature ferromagnetism in (Ag/Mg) co-doped SnO2 compounds for spintronics applications. Mater. Sci. Semicond. Process. 142, 106477 (2022). https://doi.org/10.1016/j.mssp.2022.106477

  20. Srivastava S.K., Lejay P., Barbara B., Pailh`es S., Madigou V., Bouzerar G.: Possible room-temperature ferromagnetism in K-doped SnO2: X-ray diffraction and high-resolution transmission electron microscopy study. Phys. Rev. B 82, 193203 (2010). https://doi.org/10.1103/PhysRevB.82.193203

  21. Srivastava, S.K., Lejay, P., Hadj-Azzem, A., Bouzerar, G.: Non-magnetic Impurity Induced Magnetism in Li-Doped SnO2 Nanoparticles. J. Supercond. Nov. Magn. 27, 487–492 (2014). https://doi.org/10.1007/s10948-013-2287-0

    Article  Google Scholar 

  22. Chouhan L., Panda S.K., Bhattacharjee S., Das B., Mondal A., Parida B.N., Brahma R., Manglam M.K., Kar M., Bouzerar G., Srivastava S.K.: Room temperature d0 ferromagnetism, zero dielectric loss and ac-conductivity enhancement in p-type Ag-doped SnO2 compounds. J. Alloys Compd. 870, 159515 (2021). https://doi.org/10.1016/j.jallcom.2021.159515

  23. Srivastava S.K., Lejay P., Barbara B., Boisron O., Pailhès S., Bouzerar G.: Non-magnetic impurity induced magnetism in rutile TiO2:K compounds. J. Phys. Condens. Matter 23, 442202 (2011). https://doi.org/10.1088/0953-8984/23/44/442202

  24. Chouhan, L., Bouzerar, G., Srivastava, S.K.: Effect of Mg-do** in tailoring d0 ferromagnetism of rutile TiO2 compounds for spintronics application. J. Mater. Sci. Mater. Electron. 32, 11193–11201 (2021). https://doi.org/10.1007/s10854-021-05784-y

    Article  Google Scholar 

  25. Chouhan L., Srivastava S.K.: Observation of room temperature d0 ferromagnetism, band-gap widening, zero dielectric loss and conductivity enhancement in Mg doped TiO2 (rutile + anatase) compounds for spintronics applications. J. Solid State Chem. 307, 122828 (2022). https://doi.org/10.1016/j.jssc.2021.122828

  26. Chouhan L., Narzary R., Dey B., Panda S.K., Manglam M.K., Roy L., Brahma R., Mondal A., Kar M., Ravi S., Srivastava S.K.: Tailoring room temperature d0 ferromagnetism, dielectric, optical, and transport properties in Ag-doped rutile TiO2 compounds for spintronics applications. J. Mater. Sci. Mater. Electron. 32, 28163–28175 (2021). https://doi.org/10.1007/s10854-021-07194-6

  27. Hou, D.L., Meng, H.J., Jia, L.Y., Ye, X.J., Zhou, H.J., Li, X.L.: Impurity concentration study on ferromagnetism in Cu-doped TiO2 thin films. Europhys. Lett. 78, 67001 (2007). https://doi.org/10.1209/0295-5075/78/67001

    Article  ADS  Google Scholar 

  28. Duhalde S., Vignolo M.F., Golmar F., Chiliotte C., Torres C.E.R., Errico L.A., Cabrera A.F., Rentería M., Sánchez F.H., Weissmann M.: Appearance of room-temperature ferromagnetism in Cu-doped TiO2 − δ films. Phys. Rev. B 72, 161313 (2005). https://doi.org/10.1103/PhysRevB.72.161313

  29. Dimri M.C., Khanduri H., Kooskora H., Kodu M., Jaaniso R., Heinmaa I., Mere A., Krustok J., Stern R.: Room-temperature ferromagnetism in Ca and Mg stabilized cubic zirconia bulk samples and thin films prepared by pulsed laser deposition. J. Phys. D Appl. Phys. 45, 475003 (2012). https://iopscience.iop.org/article/10.1088/0022-3727/45/47/475003/meta

  30. Chouhan L., Bouzerar G., Srivastava S.K.: d0 Ferromagnetism in Ag-doped monoclinic ZrO2 compounds. Vacuum 182, 109716 (2020). https://doi.org/10.1016/j.vacuum.2020.109716

  31. Chawla S., Jayanthi K., Kotnala R.K.: High temperature carrier controlled ferromagnetism in alkali doped ZnO nanorods. J. Appl. Phys. 106, 113923 (2009). https://doi.org/10.1063/1.3261722.

  32. Chouhan, L., Bouzerar, G., Srivastava, S.K.: d0 ferromagnetism in Li-doped ZnO compounds. J. Mater. Sci. Mater. Electron. 32, 6389–6397 (2021). https://doi.org/10.1007/s10854-021-05355-1

    Article  Google Scholar 

  33. Dey, B., Srivastava, S.K.: Crystal structure, microstructure, optical, dielectric and magnetic properties of TiO2 nanoparticles. J. Mater. Sci. Mater. Electron 33, 23506–23514 (2022). https://doi.org/10.1007/s10854-022-09111-x

    Article  Google Scholar 

  34. Ghosh S., Khan G.G., Das B., Mandal K.: Vacancy-induced intrinsic d0 ferromagnetism and photoluminescence in potassium doped ZnO nanowires. J. Appl. Phys., 109, 123927 (2011). https://doi.org/10.1063/1.3601340

  35. Dey, B., Narzary, R., Panda, S.K., Mallik, J., Mondal, A., Ravi, S., Kar, M., Srivastava, S.K.: Room temperature d0 ferromagnetism, band-gap reduction, and high optical transparency in p-type K-doped ZnO compounds for spintronics applications. Mater. Sci. Semicond. Process. 148, 1067989 (2022). https://doi.org/10.1016/j.mssp.2022.106798

    Article  Google Scholar 

  36. Dey B., Panda S.K., Mallick J., Sen S., Parida B.N., Mondal A., Kar M., Srivastava S.K.: Observation of room temperature d0 ferromagnetism, bandgap narrowing, zero dielectric loss, dielectric enhancement in highly transparent p-type Na-doped rutile TiO2 compounds for spintronics applications. J. Alloys Compounds 193, 167442 (2023). https://doi.org/10.1016/j.jallcom.2022.167442

  37. Srivastava S.K., Ravi S.: The effect of Co substitution on the crystal structure and electrical resistivity of (La0.85Ag 0.15 MnO3 compounds. J. Supercond. Nov. Magn. 22, 651–658 (2009). https://doi.org/10.1007/s10948-009-0456-y

  38. Srivastava S.K., Kar M., Ravi S.: Ferromagnetic insulating and spin glass behavior in Cr substituted La0. 85Ag0. 15MnO3 compounds. J. Phys. Condens. Matter 20(23), 235201 (2008). https://doi.org/10.1088/0953-8984/20/23/235201

  39. Narzary R., Dey B., Rout S.N., Mondal A., Bouzerar G., Kar M., Ravi S., Srivastava S.K.: Influence of K/Mg co-do** in tuning room temperature d0 ferromagnetism, optical and transport properties of ZnO compounds for spintronics applications. J. Alloys Compd. (2022)

  40. Narzary R., Dey B., Sen S., Parida B.N., Mondal A., Ravi S., Srivastava S.K.: Influence of Na/Mg co-do** in tuning microstructure, transport, optical and magnetic properties of TiO2 compounds for spintronics applications. Magnetochemistry (2022)

  41. Rajalakshmi, R., Angappane, S.: Synthesis, characterization and photoresponse study of undoped and transition metal (Co, Ni, Mn) doped ZnO thin films. Mater. Sci. Eng. B 178, 1068–1075 (2013). https://doi.org/10.1016/j.mseb.2013.06.015

    Article  Google Scholar 

  42. Panda, N.R., Sahu, D., Acharya, B.S., Nayak, P.: High UV absorption efficiency of nanocrystalline ZnO synthesized by ultrasound assisted wet chemical method. Curr. Appl. Phys. 15, 389–396 (2015). https://doi.org/10.1016/j.cap.2015.01.014

    Article  ADS  Google Scholar 

  43. Kahraman, S., Bayansal, F., Cakmak, H.M., Cetinkara, H.A., Güder, H.S.: Synthesis and characterization of undoped and tin-doped ZnO nanostructures. Appl. Phys. A 109, 87–93 (2012). https://doi.org/10.1007/s00339-012-7093-1

    Article  ADS  Google Scholar 

  44. Pandiyarajan, T., Mangalaraja, R.V., Karthikeyan, B., Sathishkumar, P., Mansilla, D., Contreras, D., Ruiz, J.: UV-A light-induced photodegradation of Acid Blue 113 in the presence of Sm-doped ZnO nanostructures. Appl. Phys. A 119, 487–495 (2015). https://doi.org/10.1007/s00339-015-9102-7

    Article  ADS  Google Scholar 

  45. Sharma, N., Kant, R., Sharma, V., Kumar, S.: Influence of silver dopant on morphological, dielectric and magnetic properties of ZnO nanoparticles. J. Electron. Mater. 47(7), 4098–4107 (2018). https://doi.org/10.1007/s11664-018-6305-7

    Article  ADS  Google Scholar 

  46. Robkhob, P., Herng, T.S., Ding, J., Tang, I., Thongmee, S.: Magnetic behavior of ZnO nanorods doped with silver (Ag3+) ions. J. Nanosci. Nanotechnol. 17(8), 5631–5636 (2017). https://doi.org/10.1166/jnn.2017.13829

    Article  Google Scholar 

  47. Hong N.H., Sakai J., Brizé V.: Observation of ferromagnetism at room temperature in ZnO thin films, J. Phys. Condens. Matter 19, 036219 (2007). https://doi.org/10.1088/0953-8984/19/3/036219

  48. Wang Q., Sun Q., Chen G., Kawazoe Y., Jena P.: Vacancy-induced magnetism in ZnO thin films and nanowires. Phys. Rev. B Condens. Matter 77, 205411 (2008). https://doi.org/10.1103/PhysRevB.77.205411

  49. Reshchikov, M.A., et al.: Luminescence properties of defects in ZnO. Physica B 401–402, 358–361 (2007). https://doi.org/10.1016/j.physb.2007.08.187

    Article  ADS  Google Scholar 

  50. Tuomisto F., Ranki V., Saarinen K., Look D.C.: Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO. Phys. Rev. Lett. 91, 205502 (2003). https://doi.org/10.1103/PhysRevLett.91.205502

  51. Zubiaga A., et al.: Positron annihilation lifetime spectroscopy of ZnO bulk samples. Phys. Rev. B. 76, 085202 (2007). https://doi.org/10.1103/PhysRevB.76.085202

  52. Vidya R., et al.: Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations. Phys. Rev. B 83, 045206 (2011). https://doi.org/10.1103/PhysRevB.83.045206

  53. Janotti A., Van de Walle C.G.: Phys. Rev. B. 76(16) 165202 (2007). https://doi.org/10.1103/PhysRevB.76.165202

  54. He, M., et al. Polaronic transport and magnetism in Ag-doped ZnO. Appl. Phys. Lett. 99 (2011) 222511. https://doi.org/10.1063/1.3665401.

  55. Ma Y.W., et al.: Inducing ferromagnetism in ZnO through do** of nonmagnetic elements. Appl. Phys. Lett. 93, 042514 (2008). https://doi.org/10.1063/1.2966360

  56. Li, A.-Y., Li, X.-D., Lin, Q.-B., Wu, S.-Q., Zhu, Z.-Z.: Half-metallic Ferromagnetism in Ag-Doped ZnO: an Ab Initio Study. Solid State Sci. 14(7), 769–772 (2012). https://doi.org/10.1016/j.solidstatesciences.2012.04.002

    Article  ADS  Google Scholar 

  57. Ali N., Khan V.A.R.Z.A., Tarafder K., Kumar A., Wadhwa M.K., Singh B., Ghosh S.: Ferromagnetism from non-magnetic ions: Ag-doped ZnO. Sci. Rep. 9, 1–13 (2019). https://doi.org/10.1038/s41598-019-56568-8

  58. Shah, A.H., Ahamed, M.B., Manikandan, E., et al.: Magnetic, optical and structural studies on Ag doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 24, 2302–2308 (2013). https://doi.org/10.1007/s10854-013-1093-6

    Article  Google Scholar 

  59. Khan Z.A., Ghosh A.S.: Room temperature ferromagnetism in ZnO using nonmagnetic ions, physics of semiconductor devices. Springer International Publishing, 551–553 (2014). https://doi.org/10.1007/978-3-319-03002-9_138

  60. Kaminski A., Das Sarma S.: Polaron percolation in diluted magnetic semiconductors. Phys. Rev. Lett. 88, 247202 (2002). https://doi.org/10.1103/PhysRevLett.88.247202

  61. Das Sarma S., Hwang E.H., Kaminski A.: Temperature-dependent magnetization in diluted magnetic semiconductors. Phys. Rev. B 67, 155201 (2003). https://doi.org/10.1103/PhysRevB.67.155201

  62. Zak, A.K., Majid, W.A., Abrishami, M.E., Yousef, R.: X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Sol. State Sci. 13, 251–256 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.11.024

    Article  ADS  Google Scholar 

Download references

Acknowledgements

BD would like to thank Ms. Radha Narzary, IIT Guwahati for hel** in characterizing SEM/EDS of the sample.

Author information

Authors and Affiliations

Authors

Contributions

B. Dey: investigation, methodology, formal analysis, writing manuscript. Sushree Nibedita Rout: investigation. Manoranjan Kar: review and editing. S. K. Srivastava: conceptualization, methodology, visualization, writing-review and editing, supervision.

Corresponding author

Correspondence to S. K. Srivastava.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, B., Rout, S.N., Kar, M. et al. Room Temperature d0 Ferromagnetism of Ag:ZnO Compounds. J Supercond Nov Magn 36, 657–663 (2023). https://doi.org/10.1007/s10948-023-06514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06514-7

Keywords

Navigation