Log in

Influence of Silver Dopant on Morphological, Dielectric and Magnetic Properties of ZnO Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Silver (Ag)-doped zinc oxide (ZnO) nanoparticles with different compositions, Zn1−xAg x O (x = 0, 0.02, 0.04, 0.06, 0.08. 0.10), were synthesized by a chemical precipitation method. The formation of a single-phase wurtzite hexagonal crystalline structure for doped ZnO nanoparticles has been investigated using x-ray diffraction. The crystallite size of the samples was evaluated by the Scherrer method and the values go on improving with increases in the concentration of dopant. Scanning electron microscopy and energy dispersive spectroscopy have been used for morphology and composition studies. The crystallite size, dielectric properties and alternating current conductivity of undoped ZnO nanoparticles were significantly affected by Ag do**. At high frequencies, the materials showed high dielectric constants and high conductivity. A detailed examination of the conductivity and dielectric loss with composition were studied in a wide frequency range at room temperature. The magnetic properties exhibited ferromagnetism both for the undoped and doped ZnO nanoparticles at room temperature, apart from saturation magnetization (Ms) which increased linearly with dopant concentration. These Ag-doped ZnO nanoparticles can be used in the preparation of spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kim, J. Moon, B. Lee, O. Song, and J. Je, J. Appl. Phys. 95, 454 (2004).

    Article  Google Scholar 

  2. K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett. 79, 988 (2001).

    Article  Google Scholar 

  3. J. Harbour and M. Hair, J. Phys. Chem. 83, 652 (1979).

    Article  Google Scholar 

  4. K. Sato and Y. Katayama, Jpn. J. Appl. Phys. 39, 8 (2000).

  5. J.J. Wu and S. Liu, Adv. Mater. 14, 215 (2002).

  6. Z. Pan, Z. Dai, and Z. Wang, Science 291, 1947 (2001).

    Article  Google Scholar 

  7. Y. Zhang, Z.Y. Zhang, B.X. Lin, Z.X. Fuand, and J. Xu, J. Phys. Chem. B 109, 19200 (2005).

    Article  Google Scholar 

  8. Y. Yana, M.M. Al-Jassim, and S.H. Wei, Appl. Phys. Lett. 89, 181912 (2006).

    Article  Google Scholar 

  9. S.S. Sartiman, N.F. Djaja, and R. Saleh, Mater. Sci. Appl. 4, 528 (2013).

    Google Scholar 

  10. S.K. Gandomania, R. Yousefi, F.J. Sheini, and N.M. Huang, Ceram. Int. 40, 7957 (2014).

    Article  Google Scholar 

  11. V. Gandhi, R. Ganesan, H.H.A. Syedahamed, and M. Thaiyan, J. Phys. Chem. C 118, 9715 (2014).

    Article  Google Scholar 

  12. R. Chauhan, A. Kumar, and R.P. Chaudhary, J. Sol-Gel. Sci. Technol. 63, 546 (2012).

    Article  Google Scholar 

  13. M. Thomas, W. Sun, and J. Cui, J. Phys. Chem. C 116, 6383 (2012).

    Article  Google Scholar 

  14. M. He, Y. Tian, D. Springer, I. Putra, G. **ng, E. Chia, S. Cheong, and T. Wu, Appl. Phys. Lett. 99, 222511 (2011).

    Article  Google Scholar 

  15. M.B. Flores and U. Pal, J. Appl. Phy. 109, 308 (2011).

    Google Scholar 

  16. O. Volnianska, P. Boguslawski, J. Kaczkowski, P. Jakubas, A. Jezierski, and E. Kaminska, Phys. Rev. B 80, 212 (2009).

    Article  Google Scholar 

  17. F. Ahmed, N. Arshi, M.S. Anwar, R. Danish, and B.H. Koo, J. Korean Phys. Soc. 62, 1479 (2013).

    Article  Google Scholar 

  18. A.K. Zak, W.A. Majid, M.E. Abrishami, and R. Yousefi, Sol. State Sci. 13, 256 (2011).

  19. H. Yadav, N. Sinha, S. Goel, and B. Kumar, J. Alloy. Compd. 689, 333 (2016).

  20. M. Shatnawi, A.M. Alsmadi, I. Bsoul, B. Salameh, G.A. Alna’washi, F. Al-Dweri, and F. El Akka, J. Alloy. Compd. 655, 244 (2016).

  21. Z.R. Dai, Z.W. Pan, and Z.L. Wang, Adv. Fun. Mater. 13, 9 (2003).

    Article  Google Scholar 

  22. S.M. Hosseini, I.A. Sarsari, P. Kameli, and H. Salamati, J. Alloy Compd. 640, 408 (2015).

    Article  Google Scholar 

  23. C. Koops, Phys. Rev. 83, 121 (1951).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Kant.

Ethics declarations

Conflict of interest

All the authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Kant, R., Sharma, V. et al. Influence of Silver Dopant on Morphological, Dielectric and Magnetic Properties of ZnO Nanoparticles. J. Electron. Mater. 47, 4098–4107 (2018). https://doi.org/10.1007/s11664-018-6305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6305-7

Keywords

Navigation