Log in

Geospatial technology–based analysis of land use land cover dynamics and its effects on land surface temperature in Guder River sub-basin, Abay Basin, Ethiopia

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

Land surface temperature (LST) is increasing due to the decline of vegetation cover and an increase in barren land in the Guder River sub-basin. In the present study, LST, Normalized Difference Vegetation Index (NDVI), Normalized Difference Bareness Index (NDBaI), and land use land cover (LULC) and the relationship between them were estimated using thermal bands and multispectral bands from Landsat TM from 1990, ETM + from 2000, and OLI/TIRS from 2020. The LST of the study area is increased by 11.3 °C from 1990 to 2020 due to the loss of vegetation cover and expansion of barren land. The relationships between LST, NDVI, and NDBaI were estimated using correlation analysis. The NDBaI has strong positive relationship with LST (R2 = 0.96), while NDVI has a strong negative relationship with LST (R2 = 0.96). The mean LST was increased over cultivated land and bare land by 11.3 °C and 10.6 °C from 1990 to 2020, respectively. Consequently, expansion of cultivated land and bare land was the main reason for the increase of LST. We recommend that decision-makers and concerned stakeholders to promote the importance of vegetation cover in climate change mitigation and minimizing LST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Available on request by the corresponding author.

Code of availability

Not applicable.

References

  • Abulibdeh A (2021) Analysis of urban heat island characteristics and mitigation strategies for eight arid and semi-arid gulf region cities. Environ Earth Sci 80:259. https://doi.org/10.1007/s12665-021-09540-7

    Article  Google Scholar 

  • Aik DHJ, Ismail MH, Muharam FM (2020) Land use/land cover changes and the relationship with land surface temperature using Landsat and MODIS imageries in Cameron Highlands. Malaysia Land 9:372. https://doi.org/10.3390/land9100372

    Article  Google Scholar 

  • Akinyemi FO, Ikanyeng M, Muro J (2019) Land cover change effects on land surface temperature trends in an African urbanizing dryland region. City Environ Interactions 4:100029. https://doi.org/10.1016/j.cacint.2020.100029

    Article  Google Scholar 

  • Alemu MM (2019) Analysis of spatio-temporal land surface temperature and normalized difference vegetation index changes in the Andassa Watershed, Blue Nile Basin. Ethiopia J Resour Ecol 10(1):77–85

    Google Scholar 

  • Al-Masaodi HGO, Al-Zubaidi HAM (2021) Spatial-temporal changes of land surface temperature and land cover Babylon Governorate, Iraq. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.05.179 (In Press).

  • Atitar M, Sobrino J (2009) A split-window algorithm for estimating LST from Meteosat 9 data: test and comparison with data and MODIS LSTs. IEEE Geosci Remote Sens Lett 6:122–126

    Article  Google Scholar 

  • Carlson TN, Petropoulos GA (2019) A new method for estimating of evapotranspiration and surface soil moisture from optical and thermal infrared measurements: the simplified triangle. Int J Remote Sens 40:7716–7729

    Article  Google Scholar 

  • Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62:241–252

    Article  Google Scholar 

  • Chen XL, Zhao HM, Li PX, Yi ZY (2006) Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Environ 104(2):133–146

    Article  Google Scholar 

  • Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37(1):35–46

    Article  Google Scholar 

  • Ding Y, Ren G, Zhao Z, Xu Y, Luo Y, Li Q, Zhang J (2007) Detection, causes and projection of climate change over China: an overview of recent progress. Adv Atmos Sci 24(6):954–971

    Article  Google Scholar 

  • Essa W, Verbeiren B, Van der Kwast J, Van de Voorde T, Batelaan O (2012) Evaluation of the DisTrad thermal sharpening methodology for urban areas. Int J Appl Earth Obs Geoinf 19:163–172

    Google Scholar 

  • Garai D, Narayana AC (2018) Land use/land cover changes in the mining area of Godavari coal fields of southern India. Egypt J Remote Sens Space Sci 21:375–381

    Google Scholar 

  • Gemeda DO, Korecha D, Garedew W (2021) Evidences of climate change presences in the wettest parts of southwest Ethiopia. Heliyon 7(9):e08009. https://doi.org/10.1016/j.heliyon.2021.e08009

    Article  Google Scholar 

  • Gohain KJ, Mohammad P, Goswami A (2021) Assessing the impact of land use land cover changes on land surface temperature over Pune city, India. Quatern Int 575:259–269

    Article  Google Scholar 

  • Guha S, Govil H (2020) Seasonal impact on the relationship between land surface temperature and normalized difference vegetation index in an urban landscape. Geocarto Int. https://doi.org/10.1080/10106049.2020.1815867

    Article  Google Scholar 

  • Guha S (2021) Annual assessment on the relationship between land surface temperature and six remote sensing indices using Landsat data from 1988 to 2019 Geocarto Int. https://doi.org/10.1080/10106049.2021.1886339

  • Guha S, Govil H, Dey H, Gill N (2018) Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city. Italy Eur J Remote Sens 51(1):667–678

    Article  Google Scholar 

  • Guha S, Govil H, Taloor AK, Gill N, Dey A (2021) Land surface temperature and spectral indices: a seasonal study of Raipur City. Geodesy Geodyn. https://doi.org/10.1016/j.geog.2021.05.002.(InPress)

    Article  Google Scholar 

  • Hadria R, Benabdelouahab T, Mahyou H, Balaghi R, Bydekerke L, El Hairech T, Ceccato P (2018) Relationship between the three components of air temperature and remotely sensed land surface temperature of agricultural areas in Morocco. Int J Remote Sens 39:356–373

    Article  Google Scholar 

  • Haylemariyam MB (2018) Detection of land surface temperature in relation to land use land cover change: Dire Dawa City, Ethiopia. J Remote Sens GIS 7(3):245. https://doi.org/10.4172/2469-4134.1000245

    Article  Google Scholar 

  • Huang R, Zhang C, Huang J, Zhu D, Wang L, Liu J (2015) Map** of daily mean air temperature in agricultural regions using daytime and nighttime land surface temperature derived from TERRA and AQUA MODIS data. Remote Sens 7:8728–8756

    Article  Google Scholar 

  • Isioye OA, Ikwueze HU, Akomolafe EA (2020) Urban heat island effects and thermal comfort in Abuja Municipal Area Council of Nigeria. FUTY J Environ 14 (2).

  • Karnieli A, Ohana-Levi N, Silver M, Paz-Kagan T, Panov N, Varghese D, Chrysoulakis N, Provenzale A (2019) Spatial and seasonal patterns in vegetation growth-limiting factors over Europe. Remote Sens 11(20):2406. https://doi.org/10.3390/rs11202406

    Article  Google Scholar 

  • Kidane M, Bezie A, Kesete N, Tolessa T (2019) The impact of land use and land cover (LULC) dynamics on soil erosion and sediment yield in Ethiopia. Heliyon 5(12):e02981

    Article  Google Scholar 

  • Kikon N, Singh P, Singh SK, Vyas A (2016) Assessment of urban heat islands (UHI) of Noida City, India using multi-temporal satellite data. Sustain Cities Soc 22:19–28. https://doi.org/10.1016/j.scs.2016.01.005

    Article  Google Scholar 

  • Kumar D, Shekhar S (2015) Statistical analysis of land surface temperature-vegetation indexes relationship through thermal remote sensing. Ecotoxicol Environ Saf 121:39–44. https://doi.org/10.1016/j.ecoenv.2015.07.004

    Article  Google Scholar 

  • Li ZL, Tang BH, Wu H, Ren H, Yan G, Wan Z, Trigo IF, Sobrino JA (2013) Satellite-derived land surface temperature: current status and perspectives. Remote Sens Environ 131:14–37. https://doi.org/10.1016/j.rse.2012.12.008

    Article  Google Scholar 

  • Marzban F, Sodoudi S, Preusker R (2018) The influence of land-cover type on the relationship between LST-NDVI and LST-Tair. Int J Remote Sens 39(5):1377–1398

    Article  Google Scholar 

  • Mathew A, Khandelwal S, Kaul N (2017) Investigating spatial and seasonal variations of urban heat island effect over Jaipur city band its relationship with vegetation, urbanization and elevation parameters. Sustain Cities Soc 35:157–177

    Article  Google Scholar 

  • Merga BB, Moisa MB, Negash DA, Ahmed Z, Gemeda DO (2022) Land surface temperature variation in response to land-use and land-cover dynamics: a case of Didessa River sub-basin in Western Ethiopia. Earth Syst Environ 6(1):1–13

    Article  Google Scholar 

  • Mishra PK, Rai A, Rai SC (2019) Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. Egypt J Remote Sens Space Sci 23(2):133–143

    Google Scholar 

  • Moisa MB, Dejene IN, Merga BB, Gemeda DO (2022a) Impacts of land use/land cover dynamics on land surface temperature using geospatial techniques in Anger River sub-basin. Western Ethiopia Environ Earth Sci 81(3):1–14

    Google Scholar 

  • Moisa MB, Negash DA, Merga BB, Gemeda DO (2021) Impact of land-use and land-cover change on soil erosion using the RUSLE model and the geographic information system: a case of Temeji watershed, Western Ethiopia. J Water Clim Chang 12(7):3404–3420

    Article  Google Scholar 

  • Moisa MB, Gemeda DO (2021) Analysis of urban expansion and land use/land cover changes using geospatial techniques: a case of Addis Ababa City, Ethiopia. Appl Geomat 13:853–861. https://doi.org/10.1007/s12518-021-00397-w

    Article  Google Scholar 

  • Moisa MB, Merga BB, Gemeda DO (2022b) Multiple indices-based assessment of agricultural drought: a case study in Gilgel Gibe sub-basin, Southern Ethiopia. Theor Appl Climatol 148:455–464. https://doi.org/10.1007/s00704-022-03962-4

    Article  Google Scholar 

  • Moisa MB, Tiye FS, GemedaDO DIN (2022c) Land suitability analysis for maize production using geospatial technologies in the Didessa watershed, Ethiopia. Artif Intell Agric 6:34–46

    Google Scholar 

  • Mushore TD, Odindi J, Dube T, Mutanga O (2017) Prediction of future urban surface temperatures using medium resolution satellite data in Harare metropolitan city. Zimbabwe Build Environ 122:397–410

    Article  Google Scholar 

  • Negash DA, Moisa MB, Merga BB, Sedeta F, Gemeda DO (2021) Soil erosion risk assessment for prioritization of sub-watershed: the case of Chogo Watershed, Horo Guduru Wollega. Ethiopia Environ Earth Sci 80(17):1–11

    Google Scholar 

  • Negassa MD, Mallie DT, Gemeda DO (2020) Forest cover change detection using Geographic Information Systems and remote sensing techniques: a spatio-temporal study on Komto Protected Forest priority area, East Wollega Zone, Ethiopia. Environ Syst Res 9(1). https://doi.org/10.1186/s40068-020-0163-z.

  • Phan TN, Kappas M, Tran TP (2018) Land surface temperature variation due to changes in elevation in Northwest Vietnam. Climate 6(2):28. https://doi.org/10.3390/cli6020028

    Article  Google Scholar 

  • Qin Z, Karnieli A, Berliner P (2001) A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int J Remote Sens 21:3719–3746

    Article  Google Scholar 

  • Rasul G, Mahmood A, Sadiq A, Khan SI (2012) Vulnerability of the Indus Delta to climate change in Pakistan. Pakistan J Meteorol 2012; 8(16).

  • Sahana M, Ahmed R, Sajjad H (2016) Analyzing land surface temperature distribution in response to land use/land cover change using split window algorithm and spectral radiance model in Sundarban Biosphere Reserve. India Model Earth Syst Environ 2:81. https://doi.org/10.1007/s40808-016-0135-5

    Article  Google Scholar 

  • Sharma M, Bangota P, Gautam AS, Gautam S (2021) Sensitivity of normalized difference vegetation index (NDVI) to land surface temperature, soil moisture and precipitation over district Gautam Buddh Nagar. Stoch Environ Res Risk Assess, UP, India. https://doi.org/10.1007/s00477-021-02066-1

    Book  Google Scholar 

  • Singh P, Kikon N, Verma P (2017) Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing-based estimate. Sustain Cities Soc 32:100–114. https://doi.org/10.1016/j.scs.2017.02.018

    Article  Google Scholar 

  • Story M, Congalton RG (1986) Accuracy assessment: a user’s perspective. Photogramm Eng Remote Sens 52(3):85–94

    Google Scholar 

  • Sun Q, Wu Z, Tan J (2012) The relationship between land surface temperature and land use/land cover in Guangzhou, China. Environ Earth Sci 65:1687–1694

    Article  Google Scholar 

  • Tafesse B, Suryabhagavan KV (2019) Systematic modeling of impacts of land-use and land-cover changes on land surface temperature in Adama Zuria District, Ethiopia. Model Earth Syst Environ 5:805–817

    Article  Google Scholar 

  • Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86:370–384

    Article  Google Scholar 

  • Wedajo GB, Muleta MK, Gessesse B, Koriche SA (2019) Spatiotemporal climate and vegetation greenness changes and their nexus for Dhidhessa River Basin. Ethiopia Environ Syst Res 8:31. https://doi.org/10.1186/s40068-019-0159-8

    Article  Google Scholar 

  • Weng Q (2009) Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends. ISPRS J Photogramm Remote Sens 64:335–344

    Article  Google Scholar 

  • Weng Q, Lu D, Schubring J (2004) Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89(4):467–483. https://doi.org/10.1016/j.rse.2003.11.005

    Article  Google Scholar 

  • Worku G, Teferi E, Bantider A (2021) Assessing the effect of vegetation change on urban land surface temperature using remote sensing data: the case of Addis Ababa city, Ethiopia. Remote Sens Appl Soc Environ 22:100520. https://doi.org/10.1016/j.rsase.2021.100520

    Article  Google Scholar 

  • Wu Z, Yu L, Zhang X, Du Z, Zhang H (2019) Satellite-based large-scale vegetation dynamics in ecological restoration programmes of Northern China. Int J Remote Sens 40(5–6):2296–2312

    Article  Google Scholar 

  • Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically map** urban areas from TM imagery. Int J Rem Sens 24(3):583–594

    Article  Google Scholar 

  • Zhang Y, Yu T, Gu X, Zhang Y, Chen L (2006) Land surface temperature retrieval from CBERS-02 IRMSS thermal infrared data and its applications in quantitative analysis of urban heat islands effects. J Remote Sens Bei**g 10:789

    Google Scholar 

  • Zhou Y, Yang G, Wang S, Wang L, Wang F, Liu X (2014) A new index for map** built up and bare land areas from Landsat8 OLI data. Remote Sens Lett 5(10).

Download references

Acknowledgements

The authors acknowledge Wollega University Faculty of Technology and Wollega University College of Natural and Computational Sciences and Jimma University College of Agriculture and Veterinary Medicine for the existing facilities to carry out desktop analysis.

Author information

Authors and Affiliations

Authors

Contributions

MBM participated in research design, data collection, Landsat image, and document analysis. MBM and DOG participated in research design, literature review, data analysis, and manuscript writing. IND participated in methodology, data analysis, and interpretation. All authors read and approved the final manuscript for publication.

Corresponding author

Correspondence to Mitiku Badasa Moisa.

Ethics declarations

Consent for publication

The authors agreed to publish the manuscript on Journal Applied Geomatics.

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moisa, M.B., Dejene, I.N. & Gemeda, D.O. Geospatial technology–based analysis of land use land cover dynamics and its effects on land surface temperature in Guder River sub-basin, Abay Basin, Ethiopia. Appl Geomat 14, 451–463 (2022). https://doi.org/10.1007/s12518-022-00445-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-022-00445-z

Keywords

Navigation