Log in

High-entropy catalysts for electrochemical water-electrolysis of hydrogen evolution and oxygen evolution reactions

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

High entropy materials (HEMs) have developed rapidly in the field of electrocatalytic water-electrolysis for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) due to their unique properties. In particular, HEM catalysts are composed of many elements. Therefore, they have rich active sites and enhanced entropy stability relative to single atoms. In this paper, the preparation strategies and applications of HEM catalysts in electrochemical water-electrolysis are reviewed to explore the stabilization of HEMs and their catalytic mechanisms as well as their application in support green hydrogen production. First, the concept and four characteristics of HEMs are introduced based on entropy and composition. Then, synthetic strategies of HEM catalysts are systematically reviewed in terms of the categories of bottom-up and top-down. The application of HEMs as catalysts for electrochemical water-electrolysis in recent years is emphatically discussed, and the mechanisms of improving the performance of electrocatalysis is expounded by combining theoretical calculation technology and ex-situ/in situ characterization experiments. Finally, the application prospect of HEMs is proposed to conquer the challenges in HEM catalyst fabrications and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Tiwari J N, Harzandi A M, Ha M, et al. High-performance hydrogen evolution by Ru single atoms and nitrided-Ru nanoparticles implanted on N-doped graphitic sheet. Advanced Energy Materials, 2019, 9(26): 1900931

    Article  Google Scholar 

  2. Liu M, Wang L, Zhao K, et al. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy & Environmental Science, 2019, 12(10): 2890–2923

    Article  Google Scholar 

  3. Li L, Liu S, Zhan C, et al. Surface and lattice engineered ruthenium superstructures towards high-performance bifunctional hydrogen catalysis. Energy & Environmental Science, 2023, 16(1): 157–166

    Article  Google Scholar 

  4. Li W, Guo Z, Yang J, et al. Advanced strategies for stabilizing single-atom catalysts for energy storage and conversion. Electrochemical Energy Reviews, 2022, 5(3): 9

    Article  Google Scholar 

  5. Li Y, Md. Sadaf S, Zhou B, et al. Ga(X)N/Si nanoarchitecture: An emerging semiconductor platform for sunlight-powered water splitting toward hydrogen. Frontiers in Energy, online, https://doi.org/10.1007/s11708-023-0881-9

  6. Lei W, Suzuki N, Terashima C, et al. Hydrogel photocatalysts for efficient energy conversion and environmental treatment. Frontiers in Energy, 2021, 15(3): 577–595

    Article  Google Scholar 

  7. Jiang Z, Ye Z, Shangguan W, et al. Recent advances of hydrogen production through particulate semiconductor photocatalytic overall water splitting. Frontiers in Energy, 2022, 16(1): 49–63

    Article  Google Scholar 

  8. Zhu J, Hu L, Zhao P, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chemical Reviews, 2020, 120(2): 851–918

    Article  Google Scholar 

  9. Li L, Wang P, Shao Q, et al. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chemical Society Reviews, 2020, 49(10): 3072–3106

    Article  Google Scholar 

  10. Xu Y, Yang J, Liao T, et al. Bifunctional water splitting enhancement by manipulating Mo-H bonding energy of transition Metal-Mo2C heterostructure catalysts. Chemical Engineering Journal, 2022, 431: 134126

    Article  Google Scholar 

  11. Ali A, Long F, Shen P K. Innovative strategies for overall water splitting using nanostructured transition metal electrocatalysts. Electrochemical Energy Reviews, 2022, 5(4): 1

    Article  Google Scholar 

  12. Tiwari J N, Sultan S, Myung C W, et al. Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nature Energy, 2018, 3(9): 773–782

    Article  Google Scholar 

  13. Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry, 2017, 1(1): 0003

    Article  Google Scholar 

  14. Yang L, Liu R, Jiao L. Electronic redistribution: Construction and modulation of interface engineering on CoP for enhancing overall water splitting. Advanced Functional Materials, 2020, 30(14): 1909618

    Article  Google Scholar 

  15. Li J, Ge R, Li Y, et al. Zeolitic imidazolate framework-67 derived cobalt-based catalysts for water splitting. Materials Today. Chemistry, 2022, 26: 101210

    Article  Google Scholar 

  16. Bai H, Chen D, Ma Q, et al. Atom do** engineering of transition metal phosphides for hydrogen evolution reactions. Electrochemical Energy Reviews, 2022, 5: 24

    Article  Google Scholar 

  17. Ji S, Lai C, Zhou H, et al. In situ growth of NiSe2 nanocrystalline array on graphene for efficient hydrogen evolution reaction. Frontiers in Energy, 2022, 16(4): 595–600

    Article  Google Scholar 

  18. Wu Z P, Lu X F, Zang S Q, et al. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Advanced Functional Materials, 2020, 30(15): 1910274

    Article  Google Scholar 

  19. Wang Z, Yang J, Wang W, et al. Hollow cobalt-nickel phosphide nanocages for efficient electrochemical overall water splitting. Science China Materials, 2021, 64(4): 861–869

    Article  Google Scholar 

  20. ** Z, Lv J, Jia H, et al. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments. Small, 2019, 15(47): 1904180

    Article  Google Scholar 

  21. Chen Z, Wen J, Wang C, et al. Convex cube-shaped Pt34Fe5Ni20Cu31Mo9Ru high entropy alloy catalysts toward highperformance multifunctional electrocatalysis. Small, 2022, 18(45): 2204255

    Article  Google Scholar 

  22. Yao Y, Dong Q, Brozena A, et al. High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery. Science, 2022, 376(6589): eabn3103

    Article  Google Scholar 

  23. Liu M, Zhang Z, Okejiri F, et al. Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions. Advanced Materials Interfaces, 2019, 6(7): 1900015

    Article  Google Scholar 

  24. Huo X, Yu H, **ng B, et al. Review of high entropy alloys electrocatalysts for hydrogen evolution, oxygen evolution, and oxygen reduction reaction. Chemical Record, 2022, 22(12): e202200175

    Article  Google Scholar 

  25. Gao S, Hao S, Huang Z, et al. Synthesis of high-entropy alloy nanoparticles on supports by the fast-moving bed pyrolysis. Nature Communications, 2020, 11(1): 2016

    Article  Google Scholar 

  26. Pan Q, Zhang L, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility. Science, 2021, 374(6570): 984–989

    Article  Google Scholar 

  27. Huang K, Zhang B, Wu J, et al. Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(24): 11938–11947

    Article  Google Scholar 

  28. Wu D, Kusada K, Yamamoto T, et al. Platinum-group-metal high-entropy-alloy nanoparticles. Journal of the American Chemical Society, 2020, 142(32): 13833–13838

    Article  Google Scholar 

  29. Zhu G, Huang Z, Xu Z, et al. Tailoring interfacial nanoparticle organization through entropy. Accounts of Chemical Research, 2018, 51(4): 900–909

    Article  Google Scholar 

  30. Xu X, Shao Z, Jiang S P. High-entropy materials for water electrolysis. Energy Technology, 2022, 10(11): 2200573

    Article  Google Scholar 

  31. Feng D, Dong Y, Zhang L, et al. Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol. Angewandte Chemie International Edition, 2020, 59(44): 19503–19509

    Article  Google Scholar 

  32. Shu Y, Bao J, Yang S, et al. Entropy-stabilized metal-CeOx solid solutions for catalytic combustion of volatile organic compounds. AIChE Journal, 2021, 67(1): e17046

    Article  Google Scholar 

  33. Chen Z, Wu J, Chen Z, et al. Entropy enhanced perovskite oxide ceramic for efficient electrochemical reduction of oxygen to hydrogen peroxide. Angewandte Chemie International Edition, 2022, 61(21): e202200086

    Article  Google Scholar 

  34. Löffler T, Ludwig A, Rossmeisl J, et al. What makes high-entropy alloys exceptional electrocatalysts? Angewandte Chemie International Edition, 2021, 60(5): 26894–903

    Article  Google Scholar 

  35. Li H, Han Y, Zhao H, et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nature Communications, 2020, 11(1): 5437

    Article  Google Scholar 

  36. **e C, Niu Z, Kim D, et al. Surface and interface control in nanoparticle catalysis. Chemical Reviews, 2020, 120(2): 1184–1249

    Article  Google Scholar 

  37. Shao Q, Wang P, Huang X. Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Advanced Functional Materials, 2019, 29(3): 1806419

    Article  Google Scholar 

  38. ** T, Sang X, Unocic R R, et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Advanced Materials, 2018, 30(23): 1707512

    Article  Google Scholar 

  39. Li X, Zhou Y, Feng C, et al. High entropy materials based electrocatalysts for water splitting: Synthesis strategies, catalytic mechanisms, and prospects. Nano Research, 2023, 16(4): 4411–4437

    Article  Google Scholar 

  40. Yao Y, Huang Z, **e P, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018, 359(6383): 1489–1494

    Article  Google Scholar 

  41. Kang Y, Tang Y, Zhu L, et al. Porous nanoarchitectures of nonprecious metal borides: From controlled synthesis to heterogeneous catalyst applications. ACS Catalysis, 2022, 12(23): 14773–14793

    Article  Google Scholar 

  42. Kang Y, Henzie J, Gu H, et al. Mesoporous metal–metalloid amorphous alloys: The first synthesis of open 3D mesoporous Ni-B amorphous alloy spheres via a dual chemical reduction method. Small, 2020, 16(10): 1906707

    Article  Google Scholar 

  43. Li R, Liu X, Liu W, et al. Design of hierarchical porosity via manipulating chemical and microstructural complexities in high-entropy alloys for efficient water electrolysis. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2022, 9(12): 2105808

    Google Scholar 

  44. Chen Z J, Zhang T, Gao X Y, et al. Engineering microdomains of oxides in high-entropy alloy electrodes toward efficient oxygen evolution. Advanced Materials, 2021, 33(33): 2101845

    Article  Google Scholar 

  45. Chen H, Lin W, Zhang Z, et al. Mechanochemical synthesis of high entropy oxide materials under ambient conditions: Dispersion of catalysts via entropy maximization. ACS Materials Letters, 2019, 1(1): 83–88

    Article  Google Scholar 

  46. Wang J, Feng J, Li Y, et al. Multilayered molybdate microflowers fabricated by one-pot reaction for efficient water splitting. Advanced Science, 2023, 2206952

  47. Tang L, Yang Y, Guo H, et al. High configuration entropy activated lattice oxygen for O2 formation on perovskite electrocatalyst. Advanced Functional Materials, 2022, 32(28): 2112157

    Article  Google Scholar 

  48. Zhan C, Bu L, Sun H, et al. Medium/high-entropy amalgamated core/shell nanoplate achieves efficient formic acid catalysis for direct formic acid fuel cell. Angewandte Chemie International Edition, 2023, 62(3): e202213783

    Article  Google Scholar 

  49. Sheelam A, Balu S, Muneeb A, et al. Improved oxygen redox activity by high-valent Fe and Co3+ sites in the perovskite LaNi1−xFe0.5xCo0.5xO3. ACS Applied Energy Materials, 2022, 5(1): 343–354

    Article  Google Scholar 

  50. Yao Y, Liu Z, **e P, et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Science Advances, 2020, 6(11): eaaz0510

    Article  Google Scholar 

  51. Ludwig A. Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. npj Computational Materials, 2019, 5(1): 70

    Article  Google Scholar 

  52. Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004, 6(5): 299–303

    Article  Google Scholar 

  53. Niu B, Zhang F, ** H, et al. Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys. Scientific Reports, 2017, 7(1): 3421

    Article  Google Scholar 

  54. George E P, Raabe D, Ritchie R O. High-entropy alloys. Nature Reviews Materials, 2019, 4(8): 515–534

    Article  Google Scholar 

  55. Jiang B, Yu Y, Cui J, et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science, 2021, 371(6531): 830–834

    Article  Google Scholar 

  56. Ma Y, Ma Y, Wang Q, et al. High-entropy energy materials: Challenges and new opportunities. Energy & Environmental Science, 2021, 14(5): 2883–2905

    Article  Google Scholar 

  57. Chang X, Zeng M, Liu K, et al. Phase engineering of high-entropy alloys. Advanced Materials, 2020, 32(14): 1907226

    Article  Google Scholar 

  58. Zhai Y, Ren X, Wang B, et al. High-entropy catalyst—A novel platform for electrochemical water splitting. Advanced Functional Materials, 2022, 32(47): 2207536

    Article  Google Scholar 

  59. Song B, Yang Y, Rabbani M, et al. In situ oxidation studies of high-entropy alloy nanoparticles. ACS Nano, 2020, 14(11): 15131–15143

    Article  Google Scholar 

  60. Li H, Lai J, Li Z, et al. Multi-sites electrocatalysis in high-entropy alloys. Advanced Functional Materials, 2021, 31(47): 2106715

    Article  Google Scholar 

  61. Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Materialia, 2013, 61(7): 2628–2638

    Article  Google Scholar 

  62. Li H, Zhu H, Zhang S, et al. Nano high-entropy materials: Synthesis strategies and catalytic applications. Small Structures, 2020, 1(2): 2070004

    Article  Google Scholar 

  63. Wang K, Huang J, Chen H, et al. Recent progress in high entropy alloys for electrocatalysts. Electrochemical Energy Reviews, 2022, 5: 17

    Article  Google Scholar 

  64. **n Y, Li S, Qian Y, et al. High-entropy alloys as a platform for catalysis: Progress, challenges, and opportunities. ACS Catalysis, 2020, 10(19): 11280–11306

    Article  Google Scholar 

  65. Yeh J W. Alloy design strategies and future trends in high-entropy alloys. Journal of the Minerals Metals & Materials Society, 2013, 65(12): 1759–1771

    Article  Google Scholar 

  66. Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014, 61: 1–93

    Article  Google Scholar 

  67. Wang R, Tang Y, Li S, et al. Effect of lattice distortion on the diffusion behavior of high-entropy alloys. Journal of Alloys and Compounds, 2020, 825: 154099

    Article  Google Scholar 

  68. Lee C, Chou Y, Kim G, et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy. Advanced Materials, 2020, 32(49): 2004029

    Article  Google Scholar 

  69. Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 2013, 61(13): 4887–4897

    Article  Google Scholar 

  70. Cantor B. Multicomponent high-entropy Cantor alloys. Progress in Materials Science, 2021, 120: 100754

    Article  Google Scholar 

  71. Li S, Cong D, Chen Z, et al. A high-entropy high-temperature shape memory alloy with large and complete superelastic recovery. Materials Research Letters, 2021, 9(6): 263–269

    Article  Google Scholar 

  72. Abdel-Karim A, El-Naggar M E, Radwan E K, et al. Highperformance mixed-matrix membranes enabled by organically/inorganic modified montmorillonite for the treatment of hazardous textile wastewater. Chemical Engineering Journal, 2021, 405: 126964

    Article  Google Scholar 

  73. Ranganathan S. Alloyed pleasures: Multimetallic cocktails. Current Science, 2003, 85(5): 1404–1406

    Google Scholar 

  74. Huang C L, Lin Y G, Chiang C L, et al. Atomic scale synergistic interactions lead to breakthrough catalysts for electrocatalytic water splitting. Applied Catalysis B: Environmental, 2023, 320: 122016

    Article  Google Scholar 

  75. Liu Y, Chen G, Ge R, et al. Construction of CoNiFe trimetallic carbonate hydroxide hierarchical hollow microflowers with oxygen vacancies for electrocatalytic water oxidation. Advanced Functional Materials, 2022, 32(32): 2200726

    Article  Google Scholar 

  76. Ma J, **ng F, Nakaya Y, et al. Nickel-based high-entropy intermetallic as a highly active and selective catalyst for acetylene semihydrogenation. Angewandte Chemie International Edition in English, 2022, 61(27): e202200889

    Article  Google Scholar 

  77. Yang C L, Wang L N, Yin P, et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science, 2021, 374(6566): 459–464

    Article  Google Scholar 

  78. Tsai C F, Wu P W, Lin P, et al. Sputter deposition of multi-element nanoparticles as electrocatalysts for methanol oxidation. Japanese Journal of Applied Physics, 2008, 47: 5755–5761

    Article  Google Scholar 

  79. Li S, Wang J, Lin X, et al. Flexible solid-state direct ethanol fuel cell catalyzed by nanoporous high-entropy Al-Pd-Ni-Cu-Mo anode and spinel (AlMnCo)3O4 cathode. Advanced Functional Materials, 2021, 31(5): 2007129

    Article  Google Scholar 

  80. Xu H, Zhang Z, Liu J, et al. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nature Communications, 2020, 11(1): 3908

    Article  Google Scholar 

  81. McCormick C R, Schaak R E. Simultaneous multication exchange pathway to high-entropy metal sulfide nanoparticles. Journal of the American Chemical Society, 2021, 143(2): 1017–1023

    Article  Google Scholar 

  82. Sugiura N, Shimokata S, Watanabe H, et al. MS analysis of chondroitin polymerization: Effects of Mn2+ ions on the stability of UDP-sugars and chondroitin synthesis. Analytical Biochemistry, 2007, 365(1): 62–73

    Article  Google Scholar 

  83. Fang G, Gao J, Lv J, et al. Multi-component nanoporous alloy/(oxy)hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2020, 268: 118431

    Article  Google Scholar 

  84. ** Z, Lyu J, Zhao Y L, et al. Top-down synthesis of noble metal particles on high-entropy oxide supports for electrocatalysis. Chemistry of Materials, 2021, 33(5): 1771–1780

    Article  Google Scholar 

  85. Nie S, Wu L, Zhao L, et al. Enthalpy-change driven synthesis of high-entropy perovskite nanoparticles. Nano Research, 2022, 15(6): 4867–4872

    Article  Google Scholar 

  86. Al Bacha S, Pighin S A, Urretavizcaya G, et al. Effect of ball milling strategy (milling device for scaling-up) on the hydrolysis performance of Mg alloy waste. International Journal of Hydrogen Energy, 2020, 45(41): 20883–20893

    Article  Google Scholar 

  87. Friscic T, Mottillo C, Titi H M. Mechanochemistry for synthesis. Angewandte Chemie International Edition, 2020, 59(3): 1018–1029

    Article  Google Scholar 

  88. Tang J, Xu J L, Ye Z G, et al. Microwave sintered porous CoCrFeNiMo high entropy alloy as an efficient electrocatalyst for alkaline oxygen evolution reaction. Journal of Materials Science and Technology, 2021, 79: 171–177

    Article  Google Scholar 

  89. Lin L, Ding Z, Karkera G, et al. High-entropy sulfides as highly effective catalysts for the oxygen evolution reaction. Small Structures, 2023, 2300012

  90. Wang T, Fan J, Do-Thanh C L, et al. Perovskite oxide–halide solid solutions: A platform for electrocatalysts. Angewandte Chemie International Edition, 2021, 60(18): 9953–9958

    Article  Google Scholar 

  91. Feng G, Ning F, Song J, et al. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. Journal of the American Chemical Society, 2021, 143(41): 17117–17127

    Article  Google Scholar 

  92. Cai Z X, Goou H, Ito Y, et al. Nanoporous ultra-high-entropy alloys containing fourteen elements for water splitting electrocatalysis. Chemical Science (Cambridge), 2021, 12(34): 11306–11315

    Article  Google Scholar 

  93. Lee Y H, Ren H, Wu E A, et al. All-sputtered, superior power density thin-film solid oxide fuel cells with a novel nanofibrous ceramic cathode. Nano Letters, 2020, 20(5): 2943–2949

    Article  Google Scholar 

  94. Rausch M, Golizadeh M, Kreiml P, et al. Sputter deposition of NiW films from a rotatable target. Applied Surface Science, 2020, 511: 145616

    Article  Google Scholar 

  95. Liu S, Li H, Zhong J, et al. A crystal glass-nanostructured Albased electrocatalyst for hydrogen evolution reaction. Science Advances, 2022, 8(44): eadd6421

    Article  Google Scholar 

  96. Löffler T, Meyer H, Savan A, et al. Discovery of a multinary noble metal-free oxygen reduction catalyst. Advanced Energy Materials, 2018, 8(34): 1802269

    Article  Google Scholar 

  97. Wang S, Xu B, Huo W, et al. Efficient FeCoNiCuPd thin-film electrocatalyst for alkaline oxygen and hydrogen evolution reactions. Applied Catalysis B: Environmental, 2022, 313: 121472

    Article  Google Scholar 

  98. Jiang H, Liu X, Zhu M N, et al. Nanoalloy libraries from laser-induced thermionic emission reduction. Science Advances, 2022, 8(16): eabm6541

    Article  Google Scholar 

  99. Amendola V, Meneghetti M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Physical Chemistry Chemical Physics, 2013, 15(9): 3027–3046

    Article  Google Scholar 

  100. Ortega S, Ibáñez M, Liu Y, et al. Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks. Chemical Society Reviews, 2017, 46(12): 3510–3528

    Article  Google Scholar 

  101. Zhai Y, Ren X, Wang B, et al. High-entropy catalyst—A novel platform for electrochemical water splitting. Advanced Functional Materials, 2022, 32(47): 2207536

    Article  Google Scholar 

  102. Abdelhafiz A, Wang B, Harutyunyan A R, et al. Carbothermal shock synthesis of high entropy oxide catalysts: Dynamic structural and chemical reconstruction boosting the catalytic activity and stability toward oxygen evolution reaction. Advanced Energy Materials, 2022, 12(35): 2200742

    Article  Google Scholar 

  103. Chen W, Luo S, Sun M, et al. High-entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis. Advanced Materials, 2022, 34(43): 2206276

    Article  Google Scholar 

  104. Feng G, Ning F, Song J, et al. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. Journal of the American Chemical Society, 2021, 143(41): 17117–17127

    Article  Google Scholar 

  105. Xu H, Zhao Y, Wang Q, et al. Supports promote single-atom catalysts toward advanced electrocatalysis. Coordination Chemistry Reviews, 2022, 451: 214261

    Article  Google Scholar 

  106. Wang C, Shang H, Wang Y, et al. Interfacial electronic structure modulation enables CoMoOx/CoOx/RuOx to boost advanced oxygen evolution electrocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2021, 9(25): 14601–14606

    Article  Google Scholar 

  107. Fu X, Zhang J, Zhan S, et al. High-entropy alloy nanosheets for fine-tuning hydrogen evolution. ACS Catalysis, 2022, 12(19): 11955–11959

    Article  Google Scholar 

  108. Tao L, Sun M, Zhou Y, et al. A general synthetic method for high-entropy alloy subnanometer ribbons. Journal of the American Chemical Society, 2022, 144(23): 10582–10590

    Article  Google Scholar 

  109. Li H, Sun M, Pan Y, et al. The self-complementary effect through strong orbital coupling in ultrathin high-entropy alloy nanowires boosting pH-universal multifunctional electro-catalysis. Applied Catalysis B: Environmental, 2022, 312: 121431

    Article  Google Scholar 

  110. Yang C, Lu Y, Duan W, et al. Recent progress and prospective of nickel selenide-based electrocatalysts for water splitting. Energy & Fuels, 2021, 35(18): 14283–14303

    Article  Google Scholar 

  111. Zhang B, Wang L, Cao Z, et al. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nature Catalysis, 2020, 3(12): 985–992

    Article  Google Scholar 

  112. Xu Z, Men X, Shan Y, et al. Electronic reconfiguration induced by neighboring exchange interaction at double perovskite oxide interface for highly efficient oxygen evolution reaction. Chemical Engineering Journal, 2022, 432: 134330

    Article  Google Scholar 

  113. Mushiana T, Khan M, Abdullah M I, et al. Facile sol-gel preparation of high-entropy multielemental electrocatalysts for efficient oxidation of methanol and urea. Nano Research, 2022, 15(6): 5014–5023

    Article  Google Scholar 

  114. Lin L, Ding Z, Karkera G, et al. High-entropy sulfides as highly effective catalysts for the oxygen evolution reaction. Small Structures, 2023, online, https://doi.org/10.1002/sstr.202300012

  115. Jia Z, Yang T, Sun L, et al. A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Advanced Materials, 2020, 32(21): 2000385

    Article  Google Scholar 

  116. Huang K, **a J, Lu Y, et al. Self-reconstructed spinel surface structure enabling the long-term stable hydrogen evolution reaction/oxygen evolution reaction efficiency of FeCoNiRu high-entropy alloyed electrocatalyst. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2023, 10(14): 2300094

    Google Scholar 

  117. Wu D, Kusada K, Yamamoto T, et al. On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles. Chemical Science (Cambridge), 2020, 11(47): 12731–12736

    Article  Google Scholar 

  118. Mei Y, Feng Y, Zhang C, et al. High-entropy alloy with Mo-coordination as efficient electrocatalyst for oxygen evolution reaction. ACS Catalysis, 2022, 12(17): 10808–10817

    Article  Google Scholar 

  119. Kwon J, Sun S, Choi S, et al. Tailored electronic structure of Ir in high entropy alloy for highly active and durable bifunctional electrocatalyst for water splitting under an acidic environment. Advanced Materials, 2023, 35(26): 2300091

    Article  Google Scholar 

  120. Falch A, Babu S P. A review and perspective on electrocatalysts containing Cr for alkaline water electrolysis: Hydrogen evolution reaction. Electrocatalysis (New York), 2021, 12(2): 104–116

    Google Scholar 

  121. Zhang Y, Yang J, Ge R, et al. The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coordination Chemistry Reviews, 2022, 461: 214493

    Article  Google Scholar 

  122. Li J, Xu Y, Liang L, et al. Metal-organic frameworks-derived nitrogen-doped carbon with anchored dual-phased phosphides as efficient electrocatalyst for overall water splitting. Sustainable Materials and Technologies, 2022, 32: e00421

    Article  Google Scholar 

  123. Liu Y, Ge R, Chen Y, et al. Urchin-like cobalt hydroxide coupled with N-doped carbon dots hybrid for enhanced electrocatalytic water oxidation. Chemical Engineering Journal, 2021, 420: 127598

    Article  Google Scholar 

  124. Ge R, Huo J, Li Y, et al. Electrocatalyst nanoarchitectonics with molybdenum-cobalt bimetallic alloy encapsulated in nitrogen-doped carbon for water splitting reaction. Journal of Alloys and Compounds, 2022, 904: 164084

    Article  Google Scholar 

  125. Yu Z, Li Y, Qu J, et al. Enhanced photoelectrochemical watersplitting performance with a hierarchical heterostructure: Co3O4 nanodots anchored TiO2@P-C3N4 core-shell nanorod arrays. Chemical Engineering Journal, 2021, 404: 126458

    Article  Google Scholar 

  126. Song J, Wei C, Huang Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts. Chemical Society Reviews, 2020, 49(7): 2196–2214

    Article  Google Scholar 

  127. Ding K, Cullen D A, Zhang L, et al. A general synthesis approach for supported bimetallic nanoparticles via surface inorganometallic chemistry. Science, 2018, 362(6414): 560–564

    Article  Google Scholar 

  128. Ao X, Zhang W, Zhao B, et al. Atomically dispersed Fe–N–C decorated with Pt-alloy core-shell nanoparticles for improved activity and durability towards oxygen reduction. Energy & Environmental Science, 2020, 13(9): 3032–3040

    Article  Google Scholar 

  129. Ma Z, Cano Z P, Yu A, et al. Enhancing oxygen reduction activity of Pt-based electrocatalysts: From theoretical mechanisms to practical methods. Angewandte Chemie International Edition, 2020, 59(42): 18334–48

    Article  Google Scholar 

  130. Li T, Yao Y, Huang Z, et al. Denary oxide nanoparticles as highly stable catalysts for methane combustion. Nature Catalysis, 2021, 4(1): 62–70

    Article  Google Scholar 

  131. Liu S, Shen Y, Zhang Y, et al. Extreme environmental thermal shock induced dislocation-rich Pt nanoparticles boosting hydrogen evolution reaction. Advanced Materials, 2022, 34(2): 2106973

    Article  Google Scholar 

  132. Liu F, Shi C, Guo X, et al. Rational design of better hydrogen evolution electrocatalysts for water splitting: A review. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2022, 9(18): 2200307

    Google Scholar 

  133. Li Y, Zhu S, Xu Y, et al. FeS2 bridging function to enhance charge transfer between MoS2 and g-C3N4 for efficient hydrogen evolution reaction. Chemical Engineering Journal, 2021, 421: 127804

    Article  Google Scholar 

  134. Xu Y, Wang C, Huang Y, et al. Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy, 2021, 80: 105545

    Article  Google Scholar 

  135. Dubouis N, Grimaud A. The hydrogen evolution reaction: from material to interfacial descriptors. Chemical Science (Cambridge), 2019, 10(40): 9165–9181

    Article  Google Scholar 

  136. Mondal A, Vomiero A. 2D transition metal dichalcogenides-based electrocatalysts for hydrogen evolution reaction. Advanced Functional Materials, 2022, 32(52): 2208994

    Article  Google Scholar 

  137. Kwon I S, Kwak I H, Zewdie G M, et al. MoSe2-VSe2-NbSe2 ternary alloy nanosheets to boost electrocatalytic hydrogen evolution reaction. Advanced Materials, 2022, 34(41): 2205524

    Article  Google Scholar 

  138. Ge R, Zhao J, Huo J, et al. Multi-interfacial Ni/Mo2C ultrafine hybrids anchored on nitrogen-doped carbon nanosheets as a highly efficient electrocatalyst for water splitting. Materials Today Nano, 2022, 20: 100248

    Article  Google Scholar 

  139. Sun Y, Dai S. High-entropy materials for catalysis: A new frontier. Science Advances, 2021, 7(20): eabg1600

    Article  Google Scholar 

  140. Lin Z, **ao B, Huang M, et al. Realizing negatively charged metal atoms through controllable d-electron transfer in ternary Ir1−xRhxSb intermetallic alloy for hydrogen evolution reaction. Advanced Energy Materials, 2022, 12(25): 2200855

    Article  Google Scholar 

  141. Guo Y, Hou B, Cui X, et al. Pt atomic layers boosted hydrogen evolution reaction in nonacidic media. Advanced Energy Materials, 2022, 12(43): 2201548

    Article  Google Scholar 

  142. Chen F Y, Wu Z Y, Adler Z, et al. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule, 2021, 5(7): 1704–1731

    Article  Google Scholar 

  143. Sun Y, Zhang W, Zhang Q, et al. A general approach to high-entropy metallic nanowire electrocatalysts. Matter, 2023, 6(1): 193–205

    Article  Google Scholar 

  144. Nørskov J K, Bligaard T, Rossmeisl J, et al. Towards the computational design of solid catalysts. Nature Chemistry, 2009, 1(1): 37–46

    Article  Google Scholar 

  145. Feng D, Dong Y, Nie P, et al. CoNiCuMgZn high entropy alloy nanoparticles embedded onto graphene sheets via anchoring and alloying strategy as efficient electrocatalysts for hydrogen evolution reaction. Chemical Engineering Journal, 2022, 430: 132883

    Article  Google Scholar 

  146. ** H, Guo C, Liu X, et al. Emerging two-dimensional nanomaterials for electrocatalysis. Chemical Reviews, 2018, 118(13): 6337–6408

    Article  Google Scholar 

  147. Xu Q, Chu M, Liu M, et al. Fluorine-triggered surface reconstruction of Ni3S2 electrocatalysts towards enhanced water oxidation. Chemical Engineering Journal, 2021, 411: 128488

    Article  Google Scholar 

  148. Yu Z, Si C, Escobar-Bedia F J, et al. Bifunctional atomically dispersed ruthenium electrocatalysts for efficient bipolar membrane water electrolysis. Inorganic Chemistry Frontiers, 2022, 9(16): 4142–4150

    Article  Google Scholar 

  149. Hu Y, Luo G, Wang L, et al. Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Advanced Energy Materials, 2021, 11(1): 2002816

    Article  Google Scholar 

  150. Cheng Y, Guo H, Li X, et al. Rational design of ultrahigh loading metal single-atoms (Co, Ni, Mo) anchored on in-situ pre-crosslinked guar gum derived N-doped carbon aerogel for efficient overall water splitting. Chemical Engineering Journal, 2021, 410: 128359

    Article  Google Scholar 

  151. King L A, Hubert M A, Capuano C, et al. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nature Nanotechnology, 2019, 14(11): 1071–1074

    Article  Google Scholar 

  152. Wang S, Huo W, Fang F, et al. High entropy alloy/C nanoparticles derived from polymetallic MOF as promising electrocatalysts for alkaline oxygen evolution reaction. Chemical Engineering Journal, 2022, 429: 132410

    Article  Google Scholar 

  153. Mao H, Guo X, Fu Y, et al. Enhanced electrolytic oxygen evolution by the synergistic effects of trimetallic FeCoNi boride oxides immobilized on polypyrrole/reduced graphene oxide. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(4): 1821–1828

    Article  Google Scholar 

  154. Wang Q, Li J, Li Y, et al. Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction. Nano Research, 2022, 15(10): 8751–8759

    Article  Google Scholar 

  155. Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nature Reviews. Materials, 2020, 5(4): 295–309

    Article  Google Scholar 

  156. Sun W, Li J, Gao W, et al. Recent advances in the pre-oxidation process in electrocatalytic urea oxidation reactions. Chemical Communications (Cambridge), 2022, 58(15): 2430–2442

    Article  Google Scholar 

  157. Sun W, Wang Y, Liu S, et al. High-entropy amorphous oxycyanide as an efficient pre-catalyst for the oxygen evolution reaction. Chemical Communications (Cambridge), 2022, 58(85): 11981–11984

    Article  Google Scholar 

  158. Hao M, Chen J, Chen J, et al. Lattice-disordered high-entropy metal hydroxide nanosheets as efficient precatalysts for bifunctional electro-oxidation. Journal of Colloid and Interface Science, 2023, 642: 41–52

    Article  Google Scholar 

  159. Li J, Guo M, Yang X, et al. Dual elemental modulation in cationic and anionic sites of the multi-metal Prussian blue analogue pre-catalysts for promoted oxygen evolution reaction. Progress in Natural Science, 2022, 32(6): 705–714

    Article  Google Scholar 

  160. Guo M, Li P, Wang A, et al. Topotactic synthesis of high-entropy sulfide nanosheets as efficient pre-catalysts for water oxidation. Chemical Communications (Cambridge), 2023, 59(34): 5098–5101

    Article  Google Scholar 

  161. Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355(6321): eaad4998

    Article  Google Scholar 

  162. Plenge M K, Pedersen J K, Mints V A, et al. Following paths of maximum catalytic activity in the composition space of high-entropy alloys. Advanced Energy Materials, 2023, 13(2): 2202962

    Article  Google Scholar 

  163. Ma S, Huang J, Zhang C, et al. One-step in-situ sprouting high-performance NiCoSxSey, bifunctional catalysts for water electrolysis at low cell voltages and high current densities. Chemical Engineering Journal, 2022, 435: 134859

    Article  Google Scholar 

  164. Hao J, Zhuang Z, Cao K, et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nature Communications, 2022, 13(1): 2662

    Article  Google Scholar 

  165. Lei Y, Zhang L, Xu W, et al. Carbon-supported high-entropy Co-Zn-Cd-Cu-Mn sulfide nanoarrays promise high-performance overall water splitting. Nano Research, 2022, 15(7): 6054–6061

    Article  Google Scholar 

  166. Yang S, Zhu J Y, Chen X N, et al. Self-supported bimetallic phosphides with artificial heterointerfaces for enhanced electrochemical water splitting. Applied Catalysis B: Environmental, 2022, 304: 120914

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51572166), the Program for Eastern Scholar (Grant No. TP2014041), and the China Postdoctoral Science Foundation (Grant No. 2021M702073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxian Li.

Ethics declarations

Competing interests Jiujun Zhang is a duputy editor-in-chief of Frontiers in Energy, who was excluded from the peer-review process and all editorial decisions related to the acceptance and publication of this article. Peer-review was handled independently by the other editors to minimise bias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sha, S., Ge, R., Li, Y. et al. High-entropy catalysts for electrochemical water-electrolysis of hydrogen evolution and oxygen evolution reactions. Front. Energy 18, 265–290 (2024). https://doi.org/10.1007/s11708-023-0892-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-023-0892-6

Keywords

Navigation